动力工程学报
動力工程學報
동력공정학보
JOURNAL OF POWER ENGINEERING
2009年
12期
1123-1128
,共6页
楚攀%何雅玲%田丽亭%雷勇刚
楚攀%何雅玲%田麗亭%雷勇剛
초반%하아령%전려정%뢰용강
换热器%纵向涡发生器%优化设计%椭圆管%数值模拟
換熱器%縱嚮渦髮生器%優化設計%橢圓管%數值模擬
환열기%종향와발생기%우화설계%타원관%수치모의
heat exchanger%longitudinal vertex generators%optimal design%oval tube%numerical simulation
对带纵向涡发生器的椭圆管翅片换热器空气侧表面的换热和流动特性进行了三维数值模拟.深入分析了纵向涡对流场和温度场的影响,并通过场协同原理揭示了纵向涡强化换热的根本机理,即减小了速度和温度梯度之间的夹角,改善了速度场和温度场的协同性.在此基础上,对纵向涡发生器的布置位置(上游布置和下游布置)和纵向涡发生器的攻角α(15°,30°,45°,60°)进行了优化设计.结果表明:当纵向涡发生器布置于换热管下游时,具有更好的强化换热能力;在纵向涡发生器采用下游布置的前提下,当纵向涡发生器的攻角α=30°时,具有最佳的强化换热能力.
對帶縱嚮渦髮生器的橢圓管翅片換熱器空氣側錶麵的換熱和流動特性進行瞭三維數值模擬.深入分析瞭縱嚮渦對流場和溫度場的影響,併通過場協同原理揭示瞭縱嚮渦彊化換熱的根本機理,即減小瞭速度和溫度梯度之間的夾角,改善瞭速度場和溫度場的協同性.在此基礎上,對縱嚮渦髮生器的佈置位置(上遊佈置和下遊佈置)和縱嚮渦髮生器的攻角α(15°,30°,45°,60°)進行瞭優化設計.結果錶明:噹縱嚮渦髮生器佈置于換熱管下遊時,具有更好的彊化換熱能力;在縱嚮渦髮生器採用下遊佈置的前提下,噹縱嚮渦髮生器的攻角α=30°時,具有最佳的彊化換熱能力.
대대종향와발생기적타원관시편환열기공기측표면적환열화류동특성진행료삼유수치모의.심입분석료종향와대류장화온도장적영향,병통과장협동원리게시료종향와강화환열적근본궤리,즉감소료속도화온도제도지간적협각,개선료속도장화온도장적협동성.재차기출상,대종향와발생기적포치위치(상유포치화하유포치)화종향와발생기적공각α(15°,30°,45°,60°)진행료우화설계.결과표명:당종향와발생기포치우환열관하유시,구유경호적강화환열능력;재종향와발생기채용하유포치적전제하,당종향와발생기적공각α=30°시,구유최가적강화환열능력.
Three-dimensional numerical simulation was performed for heat transfer and flow characteristics of fined oval tube heat exchangers with longitudinal vortex generators (LVGs). The effects of longitudinal vortex on flow field and temperature field were deeply analyzed. The fundamental mechanism of heat transfer enhancement with LVGs was also revealed using the field synergy principle, namely the reduction of the intersection angle between the velocity and the temperature gradient improved the synergy between the velocity field and the temperature field. On the basis of the study, the placement of LVGs (upstream and downstream) and attack angles α (15°, 30°, 45° and 60°) were also optimized and designed. Results indicate that the downstream placement of LVGs is better for heat transfer enhancement. And for the downstream placement of LVGs, when the attack angle of LVGs α = 30°, maximum heat transfer enhancement can be achieved.