强激光与粒子束
彊激光與粒子束
강격광여입자속
HIGH POWER LASER AND PARTICLEBEAMS
2009年
11期
1628-1632
,共5页
激光熔覆%铁基合金%磨损性能%高温性能%润滑
激光鎔覆%鐵基閤金%磨損性能%高溫性能%潤滑
격광용복%철기합금%마손성능%고온성능%윤활
laser cladding%Fe-based alloy%wear behavior%high temperature performance%lubrication
为提高40Cr合金钢的表面耐磨性,采用预置激光熔覆法在40Cr基体表面制备铁基合金涂层, 利用扫描电镜观察分析熔覆层显微组织形貌,用显微硬度仪测试熔覆层截面显微硬度,用摩擦磨损试验机测定在润滑条件下基体、熔覆层的摩擦系数随温度变化的规律.研究结果表明:熔覆层与基体实现良好冶金结合,熔覆层横截面微观组织呈现平面晶、树枝晶和胞状晶分布;熔覆层硬度值介于617.5~926.6 HV_(0.2)之间,基体硬度介于205.2~278.2 HV_(0.2)之间;在200 ℃以下,熔覆层摩擦系数在磨程中趋于平稳,在0.1附近轻微波动,小于基体平均摩擦系数;当温度超过200 ℃,油膜分解,引发润滑失效,磨损方式向干摩擦转化,磨损机理从微切削磨损主导向粘着磨损、磨粒磨损和氧化磨损复合磨损方式转化.
為提高40Cr閤金鋼的錶麵耐磨性,採用預置激光鎔覆法在40Cr基體錶麵製備鐵基閤金塗層, 利用掃描電鏡觀察分析鎔覆層顯微組織形貌,用顯微硬度儀測試鎔覆層截麵顯微硬度,用摩抆磨損試驗機測定在潤滑條件下基體、鎔覆層的摩抆繫數隨溫度變化的規律.研究結果錶明:鎔覆層與基體實現良好冶金結閤,鎔覆層橫截麵微觀組織呈現平麵晶、樹枝晶和胞狀晶分佈;鎔覆層硬度值介于617.5~926.6 HV_(0.2)之間,基體硬度介于205.2~278.2 HV_(0.2)之間;在200 ℃以下,鎔覆層摩抆繫數在磨程中趨于平穩,在0.1附近輕微波動,小于基體平均摩抆繫數;噹溫度超過200 ℃,油膜分解,引髮潤滑失效,磨損方式嚮榦摩抆轉化,磨損機理從微切削磨損主導嚮粘著磨損、磨粒磨損和氧化磨損複閤磨損方式轉化.
위제고40Cr합금강적표면내마성,채용예치격광용복법재40Cr기체표면제비철기합금도층, 이용소묘전경관찰분석용복층현미조직형모,용현미경도의측시용복층절면현미경도,용마찰마손시험궤측정재윤활조건하기체、용복층적마찰계수수온도변화적규률.연구결과표명:용복층여기체실현량호야금결합,용복층횡절면미관조직정현평면정、수지정화포상정분포;용복층경도치개우617.5~926.6 HV_(0.2)지간,기체경도개우205.2~278.2 HV_(0.2)지간;재200 ℃이하,용복층마찰계수재마정중추우평은,재0.1부근경미파동,소우기체평균마찰계수;당온도초과200 ℃,유막분해,인발윤활실효,마손방식향간마찰전화,마손궤리종미절삭마손주도향점착마손、마립마손화양화마손복합마손방식전화.
In order to increase the wear resistance of 40Cr steel, Fe-based alloy coating was obtained on the surface of 40Cr steel substrate with preset laser cladding technique. The microhardness of both clad coating and substrate were measured by mi-crohardness tester, and the micrographs of clad coating were scanned by SEM. Moreover, wear tests were carried out by wear tester to determine the rule of friction coefficient varying with temperature under lubrication condition. As the tests show, good metallurgical bonding was obtained between Fe-based alloy coating and 40Cr substrate. The microstructure of cross section of the clad coating presents a vertical distribution of planar crystal,dendrite crystal and cellular crystal. The microhardness value of the clad coating fluctuated between 617.5 and 926.6 HV_(0.2),while that of substrate between 205.2 and 278.2 HV_(0.2). Below 200 ℃ , the wear process of clad coating kept stable. The average friction coefficient of clad coating kept at 0.1. As the temperature exceeded 200 ℃ ,the lubrication oil film decomposed and led to lubrication failure, the wear mechanism gradually transformed from micro-scale abrasive wear to adhesion wear, abrasive wear and oxidation wear.