纯粹数学与应用数学
純粹數學與應用數學
순수수학여응용수학
PURE AND APPLIED MATHEMATICS
2010年
2期
257-261
,共5页
姚国柱%段雪峰%廖安平
姚國柱%段雪峰%廖安平
요국주%단설봉%료안평
非线性矩阵方程%正定解%插值理论
非線性矩陣方程%正定解%插值理論
비선성구진방정%정정해%삽치이론
nonlinear matrix equation%positive definite solution%interpolation theory
研究了一类来源于插值理论的非线性矩阵方程.利用Kronecker积的性质以及Banach空间单调有界序列收敛原理证明了此类方程正定解的存在唯一性.另外也给出了此方程正定解的范围.
研究瞭一類來源于插值理論的非線性矩陣方程.利用Kronecker積的性質以及Banach空間單調有界序列收斂原理證明瞭此類方程正定解的存在唯一性.另外也給齣瞭此方程正定解的範圍.
연구료일류래원우삽치이론적비선성구진방정.이용Kronecker적적성질이급Banach공간단조유계서렬수렴원리증명료차류방정정정해적존재유일성.령외야급출료차방정정정해적범위.
A class of nonlinear matrix equation connected to interpolation theory is investigated. Making use of the Kronecker product and the convergent principle for the monotonic and bounded sequence in the Banach space, we prove the equation exists a unique positive definite solution. In addition, the range for the positive definite solution of the equation is presented.