地球物理学报
地毬物理學報
지구물이학보
2009年
12期
2993-3000
,共8页
扰动点质量模型%调和分析%Toeplitz循环矩阵%快速傅里叶变换
擾動點質量模型%調和分析%Toeplitz循環矩陣%快速傅裏葉變換
우동점질량모형%조화분석%Toeplitz순배구진%쾌속부리협변환
Disturbing point mass model%Harmonic analysis%Toeplitz circular matrix%Fast Fourier transform
对全球扰动点质量模型而言,可以假定虚拟扰动质点系位于地球内部同一Bjerhamar球面上,同时把边值界面视为球面.本文针对这一假设下所形成的线性方程组的系数阵,运用快速傅里叶变换的方法,得到了点质量模型解算中利用分块循环矩阵分解大型线性方程组的新方法.全球30'×30'扰动点质量模型259200阶方程组的解算分解为720个360阶方程组的解算,解决了点质量模型构建中大型线性方程组的稳定解算问题.推导了全球点质量模型与球谐位系数模型的转换关系,得到了一种基于球面边值问题的点质量调和分析方法.数值模拟试验表明,在适当选取点质量埋深度的情况下,本文的点质量调和分析方法较传统的调和分析方法精度更高.
對全毬擾動點質量模型而言,可以假定虛擬擾動質點繫位于地毬內部同一Bjerhamar毬麵上,同時把邊值界麵視為毬麵.本文針對這一假設下所形成的線性方程組的繫數陣,運用快速傅裏葉變換的方法,得到瞭點質量模型解算中利用分塊循環矩陣分解大型線性方程組的新方法.全毬30'×30'擾動點質量模型259200階方程組的解算分解為720箇360階方程組的解算,解決瞭點質量模型構建中大型線性方程組的穩定解算問題.推導瞭全毬點質量模型與毬諧位繫數模型的轉換關繫,得到瞭一種基于毬麵邊值問題的點質量調和分析方法.數值模擬試驗錶明,在適噹選取點質量埋深度的情況下,本文的點質量調和分析方法較傳統的調和分析方法精度更高.
대전구우동점질량모형이언,가이가정허의우동질점계위우지구내부동일Bjerhamar구면상,동시파변치계면시위구면.본문침대저일가설하소형성적선성방정조적계수진,운용쾌속부리협변환적방법,득도료점질량모형해산중이용분괴순배구진분해대형선성방정조적신방법.전구30'×30'우동점질량모형259200계방정조적해산분해위720개360계방정조적해산,해결료점질량모형구건중대형선성방정조적은정해산문제.추도료전구점질량모형여구해위계수모형적전환관계,득도료일충기우구면변치문제적점질량조화분석방법.수치모의시험표명,재괄당선취점질량매심도적정황하,본문적점질량조화분석방법교전통적조화분석방법정도경고.
The global disturbing point mass model is based on the assumption that the virtual disturbing point mass are located on the same Bjerhamar sphere inside the earth and at the same time the boundary is a sphere surface. From the assumption linear equations has to be solved for the point masses. The paper is aimed at the solution of point masses by decomposing huge linear equations in terms of blocked circular matrix using the Fast Fourier Transform method. For global 30'×30' point masses, the solution was completed by decomposing a 259200-order linear equations into 720 360-order equations. The method solves the stability problem that occurs in the solution of huge linear equations for point mass modeling. The conversion from global pointmass model to spherical harmonic coefficient was made and a point mass harmonic analysis method based on spherical boundary value problem was derived. Numerical simulation proves that the proposed method is more accurate than conventional harmonic analysis method.