桥梁建设
橋樑建設
교량건설
BRIDGE CONSTRUCTION
2009年
z2期
45-49
,共5页
钢桥%整体桥面%模型%静力试验%疲劳试验
鋼橋%整體橋麵%模型%靜力試驗%疲勞試驗
강교%정체교면%모형%정력시험%피로시험
steel bridge%integral deck%model%static load test%fatigue test
南京大胜关长江大桥主桥为六跨连续钢桁拱桥,采用整体桥面板结构.制作钢桥面板和主桁下弦杆节点板连接细节足尺模型,分3个阶段进行疲劳试验.每个阶段疲劳试验完成后,以该阶段试验荷载上限进行静力试验.ANSYS分析结果显示,模型设计及加栽满足模拟要求,试验加载能够反映实际结构的受力状况.静力试验结果表明,各级荷载作用下模型均处于弹性阶段,卸载后基本没有残余应力.疲劳试验结果表明,在各加载循环次数下试验时,没有产生因为疲劳损伤影响应力重分布的现象;按给定的计算应力幅加载作用下,常幅加载寿命大于200万次;疲劳抗力大于试验设计荷载作用下的双向应力幅;连接细部具有足够的抗疲劳能力.
南京大勝關長江大橋主橋為六跨連續鋼桁拱橋,採用整體橋麵闆結構.製作鋼橋麵闆和主桁下絃桿節點闆連接細節足呎模型,分3箇階段進行疲勞試驗.每箇階段疲勞試驗完成後,以該階段試驗荷載上限進行靜力試驗.ANSYS分析結果顯示,模型設計及加栽滿足模擬要求,試驗加載能夠反映實際結構的受力狀況.靜力試驗結果錶明,各級荷載作用下模型均處于彈性階段,卸載後基本沒有殘餘應力.疲勞試驗結果錶明,在各加載循環次數下試驗時,沒有產生因為疲勞損傷影響應力重分佈的現象;按給定的計算應力幅加載作用下,常幅加載壽命大于200萬次;疲勞抗力大于試驗設計荷載作用下的雙嚮應力幅;連接細部具有足夠的抗疲勞能力.
남경대성관장강대교주교위륙과련속강항공교,채용정체교면판결구.제작강교면판화주항하현간절점판련접세절족척모형,분3개계단진행피로시험.매개계단피로시험완성후,이해계단시험하재상한진행정력시험.ANSYS분석결과현시,모형설계급가재만족모의요구,시험가재능구반영실제결구적수력상황.정력시험결과표명,각급하재작용하모형균처우탄성계단,사재후기본몰유잔여응력.피로시험결과표명,재각가재순배차수하시험시,몰유산생인위피로손상영향응력중분포적현상;안급정적계산응력폭가재작용하,상폭가재수명대우200만차;피로항력대우시험설계하재작용하적쌍향응력폭;련접세부구유족구적항피로능력.
The main bridge of Dashengguan Changjiang River Bridge in Nanjing is a six-span continuous steel truss arch bridge and the deck of the bridge makes use of the integral steel deck structure. The full-scale model for the connection detail between the deck and gusset plates of the bottom chord of the main truss is fabricated and the fatigue tests for the model are made in three stages. After the fatigue test in each stage is completed, the upper limit of the test load in that stage is used to continue to make the static load test. The analysis of the ANSYS shows that the design and loading of the model can meet the requirements for simulation and the loading applied in the tests can represent the force conditions of the actual structure. The static load test shows that under the action of different loading levels, the model is still in the state of elasticity and is almost without residual stress after unloading. The results of the fatigue tests further show that when the model was tested under different times of load cycling and the stress redistribution due to the fatigue damage influence does not occur. Under the action of loading according to the given calculated stress amplitude, the life of the model under constant stress amplitude loading is longer than 200×10~4 times of load cycling, the fatigue resistance is greater than the two-way stress amplitude of the designed test load and the connection detail between the deck and gusset plates has sufficient fatigue resistance capacity.