环境科学研究
環境科學研究
배경과학연구
RSEARCH OF ENUIRONMENTAL SCIENCES
2010年
3期
266-271
,共6页
刘焱明%张承中%李文慧%周变红%蒋君丽%马万里%李一凡
劉焱明%張承中%李文慧%週變紅%蔣君麗%馬萬裏%李一凡
류염명%장승중%리문혜%주변홍%장군려%마만리%리일범
有机氯农药%大气%来源分析%长距离传输%西安
有機氯農藥%大氣%來源分析%長距離傳輸%西安
유궤록농약%대기%래원분석%장거리전수%서안
organochlorine pesticides (OCPs)%air%source apportionment%long-distance transport%Xi'an
采用大流量主动采样器于2008年7-10月对西安城区大气进行采集,共获得颗粒态和气态样品24个,并对其中含有的17种有机氯农药(OCPs)进行了分析. 结果表明:西安城区大气中ρ(α-硫丹)和ρ(β-硫丹)最高,分别为260.7和212.0 pg/m~3, ρ(DDTs)(DDTs=o,p′-DDD + o,p′-DDT + o,p′-DDE + p,p′-DDD + p,p′-DDT+ p,p′-DDE)为167.4 pg/m~3,ρ(HCHs)(HCHs=α-HCH + β-HCH + γ-HCH)为199.3 pg/m~3,ρ(trans-氯丹)和ρ(cis-氯丹)分别为104.0和97.3 pg/m~3, ρ(六氯苯)为74.9 pg/m~3,且都主要分布在气相中. 来源分析表明,西安大气中DDTs受三氯杀螨醇的影响显著,而HCHs则主要来源于林丹的使用残留. α-HCH, HCB, p,p′-DDE及p,p′-DDT主要受污染物长距离传输影响,而γ-HCH,trans-氯丹,cis-氯丹,α-硫丹和β-硫丹主要受采样点周边地表挥发的影响.
採用大流量主動採樣器于2008年7-10月對西安城區大氣進行採集,共穫得顆粒態和氣態樣品24箇,併對其中含有的17種有機氯農藥(OCPs)進行瞭分析. 結果錶明:西安城區大氣中ρ(α-硫丹)和ρ(β-硫丹)最高,分彆為260.7和212.0 pg/m~3, ρ(DDTs)(DDTs=o,p′-DDD + o,p′-DDT + o,p′-DDE + p,p′-DDD + p,p′-DDT+ p,p′-DDE)為167.4 pg/m~3,ρ(HCHs)(HCHs=α-HCH + β-HCH + γ-HCH)為199.3 pg/m~3,ρ(trans-氯丹)和ρ(cis-氯丹)分彆為104.0和97.3 pg/m~3, ρ(六氯苯)為74.9 pg/m~3,且都主要分佈在氣相中. 來源分析錶明,西安大氣中DDTs受三氯殺螨醇的影響顯著,而HCHs則主要來源于林丹的使用殘留. α-HCH, HCB, p,p′-DDE及p,p′-DDT主要受汙染物長距離傳輸影響,而γ-HCH,trans-氯丹,cis-氯丹,α-硫丹和β-硫丹主要受採樣點週邊地錶揮髮的影響.
채용대류량주동채양기우2008년7-10월대서안성구대기진행채집,공획득과립태화기태양품24개,병대기중함유적17충유궤록농약(OCPs)진행료분석. 결과표명:서안성구대기중ρ(α-류단)화ρ(β-류단)최고,분별위260.7화212.0 pg/m~3, ρ(DDTs)(DDTs=o,p′-DDD + o,p′-DDT + o,p′-DDE + p,p′-DDD + p,p′-DDT+ p,p′-DDE)위167.4 pg/m~3,ρ(HCHs)(HCHs=α-HCH + β-HCH + γ-HCH)위199.3 pg/m~3,ρ(trans-록단)화ρ(cis-록단)분별위104.0화97.3 pg/m~3, ρ(륙록분)위74.9 pg/m~3,차도주요분포재기상중. 래원분석표명,서안대기중DDTs수삼록살만순적영향현저,이HCHs칙주요래원우림단적사용잔류. α-HCH, HCB, p,p′-DDE급p,p′-DDT주요수오염물장거리전수영향,이γ-HCH,trans-록단,cis-록단,α-류단화β-류단주요수채양점주변지표휘발적영향.
Air samples were collected by a high volume active air sampler from July to October, 2008, in Xi'an City. Twenty-four total suspended particle (TSP) samples and gas phase air samples were obtained, and concentrations of 17 organochlorine pesticides (OCPs) were analyzed. Results showed that the average mass concentrations of α-endosulfan and β-endosulfan were 260.7 and 212.0 pg/m~3, respectively, higher than the other OCPs. Average mass concentrations of DDTs (o,p′-DDD + o,p′-DDT + o,p′-DDE + p,p′-DDD + p,p′-DDT + p,p′-DDE), HCHs (α-HCH + β-HCH + γ-HCH), trans-chlordane, cis-chlordane, and hexachlorobenzene were 167.4, 199.3, 104.0, 97.3 and 74.9 pg/m~3, respectively. All the OCPs were mainly detected in the gas phase. Source apportionment indicated that DDTs was significantly caused by the application of dicofol, and HCHs mainly came from the usage of lindane. α-HCH, HCB, p,p′-DDE and p,p′-DDT could be subjected to long range transport, while γ-HCH, trans-chlordane, cis-chlordane, α-endosulfan and β-endosulfan might be from emissions in the surrounding area.