计算力学学报
計算力學學報
계산역학학보
CHINESE JOURNAL OF COMPUTATIONAL MECHANICS
2004年
3期
356-360
,共5页
斜拉索%瞬态响应%振动控制%非线性
斜拉索%瞬態響應%振動控製%非線性
사랍색%순태향응%진동공제%비선성
stay cable%transient response%vibration control%non-linearity
考虑索的抗弯刚度、垂度及几何非线性的影响,得出了索-阻尼器系统的空间非线性振动偏微分方程,用中心差分法将微分方程在空间内离散,导出了系统的非线性振动常微分方程组.结合Newmark法及虚拟力法提出了一种用于求解非线性振动瞬态响应的杂交分析算法.并以典型的斜拉桥拉索为研究对象,给出了数值算例,并与Runge-Kutta直接积分法进行了比较,说明了杂交算法的准确性及有效性.
攷慮索的抗彎剛度、垂度及幾何非線性的影響,得齣瞭索-阻尼器繫統的空間非線性振動偏微分方程,用中心差分法將微分方程在空間內離散,導齣瞭繫統的非線性振動常微分方程組.結閤Newmark法及虛擬力法提齣瞭一種用于求解非線性振動瞬態響應的雜交分析算法.併以典型的斜拉橋拉索為研究對象,給齣瞭數值算例,併與Runge-Kutta直接積分法進行瞭比較,說明瞭雜交算法的準確性及有效性.
고필색적항만강도、수도급궤하비선성적영향,득출료색-조니기계통적공간비선성진동편미분방정,용중심차분법장미분방정재공간내리산,도출료계통적비선성진동상미분방정조.결합Newmark법급허의역법제출료일충용우구해비선성진동순태향응적잡교분석산법.병이전형적사랍교랍색위연구대상,급출료수치산례,병여Runge-Kutta직접적분법진행료비교,설명료잡교산법적준학성급유효성.
Taking the bending stiffness, static sag, and geometric non-linearity into account, the space nonlinear vibration partial differential equations are derived. The partial differential equations are discretized in space by finite center difference approximation, then the nonlinear ordinary differential equations are obtained. A hybrid method involving the combination of the Newmark method and the pseudo-force strategy is proposed to analyze the nonlinear transient response of the inclined cable-dampers system subjected to arbitrary dynamic loading. As examples, two typical stay cable are calculated by the present method. The results reveal both the validity and the efficiency of the viscoelasticity damper for vibration control of stay cable. The efficiency and accuracy of the proposed method is also verified by comparing the results with those obtained by using Runge-Kutta direct integration technique. Some valuable suggestions are proposed for the engineering design.