高技术通讯
高技術通訊
고기술통신
HIGH TECHNOLOGY LETTERS
2009年
6期
644-649
,共6页
沈国状%廖静娟%郭华东%董磊
瀋國狀%廖靜娟%郭華東%董磊
침국상%료정연%곽화동%동뢰
ENVISAT ASAR%鄱阳湖%生物量反演%密歇根微波冠层散射(MIMICS)%人工神经网络(ANN)
ENVISAT ASAR%鄱暘湖%生物量反縯%密歇根微波冠層散射(MIMICS)%人工神經網絡(ANN)
ENVISAT ASAR%파양호%생물량반연%밀헐근미파관층산사(MIMICS)%인공신경망락(ANN)
ENVISAT ASAR%Poyang Lake wetland%biomass inversion%MIchigan MIcrowave Canopy Scattering (MIMICS)%artificial neural network (ANN)
湿生植被是鄱阳湖湿地生态系统的重要组成部分,生物量的大小是衡量湿地生态系统初级生产力的主要指标之一.本文利用ENVISAT ASAR交替极化(HH,VV)数据对鄱阳湖湿地地区的湿生植被进行生物量反演研究,并在密歇根微波冠层散射(MIMICS)模型模拟分析的基础上利用人工神经网络(ANN)方法来反演生物量.据此计算出鄱阳湖4月份湿生植被的总生物量干重约为1.065×109kg,并给出了生物量分布图.反演结果表明,ENVISAT ASAR数据可以很好地用于湿地植被生物量反演;神经网络生物量反演方法可以有效地表达生物量与后向散射系数之间复杂的非线性关系,从而大大提高反演精度;反演结果的误差主要来自于实地采样、图像配准、反演计算过程中带来的误差.
濕生植被是鄱暘湖濕地生態繫統的重要組成部分,生物量的大小是衡量濕地生態繫統初級生產力的主要指標之一.本文利用ENVISAT ASAR交替極化(HH,VV)數據對鄱暘湖濕地地區的濕生植被進行生物量反縯研究,併在密歇根微波冠層散射(MIMICS)模型模擬分析的基礎上利用人工神經網絡(ANN)方法來反縯生物量.據此計算齣鄱暘湖4月份濕生植被的總生物量榦重約為1.065×109kg,併給齣瞭生物量分佈圖.反縯結果錶明,ENVISAT ASAR數據可以很好地用于濕地植被生物量反縯;神經網絡生物量反縯方法可以有效地錶達生物量與後嚮散射繫數之間複雜的非線性關繫,從而大大提高反縯精度;反縯結果的誤差主要來自于實地採樣、圖像配準、反縯計算過程中帶來的誤差.
습생식피시파양호습지생태계통적중요조성부분,생물량적대소시형량습지생태계통초급생산력적주요지표지일.본문이용ENVISAT ASAR교체겁화(HH,VV)수거대파양호습지지구적습생식피진행생물량반연연구,병재밀헐근미파관층산사(MIMICS)모형모의분석적기출상이용인공신경망락(ANN)방법래반연생물량.거차계산출파양호4월빈습생식피적총생물량간중약위1.065×109kg,병급출료생물량분포도.반연결과표명,ENVISAT ASAR수거가이흔호지용우습지식피생물량반연;신경망락생물량반연방법가이유효지표체생물량여후향산사계수지간복잡적비선성관계,종이대대제고반연정도;반연결과적오차주요래자우실지채양、도상배준、반연계산과정중대래적오차.
Wetland vegetation is an important component of the wetland ecosystem. Biomass is one of the key indicators of the wetland ecosystem's primary productivity. The ENVISAT ASAR alternative polarized (HH, VV) data were used to retrieve the biomass of Poyang Lake wetland of China. An artificial neural network (ANN) model, on the basis of the simulation analysis of MIchigan MIcrowave Canopy Scattering (MIMICS) model, was used to retrieve the biomass. The dry total biomass in the Poyang Lake wetland of April, 2007 was around 1.065×109kg. And the biomass distribution map of April, 2007 was given. The inversion result shows that ENVISAT ASAR alternative polarizition data can be used for biomass inversion of wetland vegetation; ANN method can also efficiently express the complex non-linear relationship between the biomass and backscatter coefficient so as to improve the inversion accuracy; the errors mainly come from the filed measurements, image registration, and the inversion process.