中央民族大学学报:自然科学版
中央民族大學學報:自然科學版
중앙민족대학학보:자연과학판
Journal of The Central University for Nationalities(Natural Sciences Edition)
2011年
4期
43-47
,共5页
双曲型积分微分方程%半线性%修正H1-Galerkin混合有限元方法%最优阶误差估计
雙麯型積分微分方程%半線性%脩正H1-Galerkin混閤有限元方法%最優階誤差估計
쌍곡형적분미분방정%반선성%수정H1-Galerkin혼합유한원방법%최우계오차고계
hyperbolic partial integro-differential equations%semilinear%modified H1-galerkin mixed finite element methods%optimal order error estimate
利用修正的H1-Galerkin混合有限元方法研究了多维半线性双曲型积分微分方程,得到了半离散解及全离散解的最优收敛阶误差估计,该方法的优点是不需验证LBB相容性条件.
利用脩正的H1-Galerkin混閤有限元方法研究瞭多維半線性雙麯型積分微分方程,得到瞭半離散解及全離散解的最優收斂階誤差估計,該方法的優點是不需驗證LBB相容性條件.
이용수정적H1-Galerkin혼합유한원방법연구료다유반선성쌍곡형적분미분방정,득도료반리산해급전리산해적최우수렴계오차고계,해방법적우점시불수험증LBB상용성조건.
Semilinear hyperbolic partial integro-differential equations are studied by modified H1- Galerkin mixed finite element methods. Optimal order error estimates are obtained for both semidiscrete and fully discrete solutions. The main feature of this method is that the approximations have the same rate convergence as in the classical mixed finite element methods without the LBB consistency conditions.