岩性油气藏
巖性油氣藏
암성유기장
LITHOLOGIC RESERVOIRS
2011年
4期
115-118,132
,共5页
刘小洪%冯明友%杨午阳%孙辉%魏新建%刘哲
劉小洪%馮明友%楊午暘%孫輝%魏新建%劉哲
류소홍%풍명우%양오양%손휘%위신건%류철
Kohonen%神经网络%地震相%沉积相%柴达木盆地
Kohonen%神經網絡%地震相%沉積相%柴達木盆地
Kohonen%신경망락%지진상%침적상%시체목분지
Kohonen%neural network%seismic facies%sedimentary facies%Qaidam Basin
为研究柴达木盆地E区大型背斜构造沉积相及砂体展布规律,在二维地震数据闭合差校正、邻区井标定引入及精细层位解释基础上,利用改进算法的Kohonen神经网络技术开展二维地震相划分研究,识别出三角洲前缘水下分流河道、分流间湾及滩坝等微相。本文研究认为,研究区古流向为南东—北西向,储集砂体较发育,主要富集于研究区中部,现今构造东高点位于有利沉积相带。改进算法的Kohonen神经网络二维地震相划分技术补充了沉积相研究成果,适合于西部二维地震资料覆盖的风险探区,具较强的推广价值。
為研究柴達木盆地E區大型揹斜構造沉積相及砂體展佈規律,在二維地震數據閉閤差校正、鄰區井標定引入及精細層位解釋基礎上,利用改進算法的Kohonen神經網絡技術開展二維地震相劃分研究,識彆齣三角洲前緣水下分流河道、分流間灣及灘壩等微相。本文研究認為,研究區古流嚮為南東—北西嚮,儲集砂體較髮育,主要富集于研究區中部,現今構造東高點位于有利沉積相帶。改進算法的Kohonen神經網絡二維地震相劃分技術補充瞭沉積相研究成果,適閤于西部二維地震資料覆蓋的風險探區,具較彊的推廣價值。
위연구시체목분지E구대형배사구조침적상급사체전포규률,재이유지진수거폐합차교정、린구정표정인입급정세층위해석기출상,이용개진산법적Kohonen신경망락기술개전이유지진상화분연구,식별출삼각주전연수하분류하도、분류간만급탄패등미상。본문연구인위,연구구고류향위남동—북서향,저집사체교발육,주요부집우연구구중부,현금구조동고점위우유리침적상대。개진산법적Kohonen신경망락이유지진상화분기술보충료침적상연구성과,괄합우서부이유지진자료복개적풍험탐구,구교강적추엄개치。
The situation of E area is hard to proceed deep research and risk assessment by the absent of prospecting well data.Based on seismic mis-tie calibration,adjacent well calibration and fine horizon interpretation,Kohonen neural network method is applied to carry out two-dimensional seismic facies classification of target zone.Microfacies of delta front such as distributary channel,interdistributary bay and sand bar are recognized.The paleo-current direction is suspected from southeast to northwest.Reservoir sand bodies developed well in the middle of the study area,preliminary prospecting well is located in favorable sedimentary facies.Sedimentary facies division are supplied and refined by the result of seismic facies,which can supply significant foundation for geometric arrangement of risk wells and regional breakthrough.