东南大学学报(英文版)
東南大學學報(英文版)
동남대학학보(영문판)
JOURNAL OF SOUTHEAST UNIVERSITY
2004年
3期
356-359
,共4页
曲线墙%浅圆仓%散体物料%侧压力%破裂面
麯線牆%淺圓倉%散體物料%側壓力%破裂麵
곡선장%천원창%산체물료%측압력%파렬면
curvy wall%squat silos%bulk materials%wall pressure%plane of rupture
Rankine理论和Coulomb理论均不适合用于浅圆仓的侧压力计算. 基于此, 本文研究了浅圆仓散料侧压力的实际分布规律及计算方法. 根据极限平衡理论, 首先得到散粒体作用在单位周长的仓壁上的合压力, 然后通过严格的数学推导, 得到浅圆仓侧压力的分布规律. 结果表明, 本文结果与实仓试验结果相符, 说明本文公式不论对平堆还是锥堆都比较适合, 而Rankine理论和Coulomb理论用于浅圆仓均有缺陷.
Rankine理論和Coulomb理論均不適閤用于淺圓倉的側壓力計算. 基于此, 本文研究瞭淺圓倉散料側壓力的實際分佈規律及計算方法. 根據極限平衡理論, 首先得到散粒體作用在單位週長的倉壁上的閤壓力, 然後通過嚴格的數學推導, 得到淺圓倉側壓力的分佈規律. 結果錶明, 本文結果與實倉試驗結果相符, 說明本文公式不論對平堆還是錐堆都比較適閤, 而Rankine理論和Coulomb理論用于淺圓倉均有缺陷.
Rankine이론화Coulomb이론균불괄합용우천원창적측압력계산. 기우차, 본문연구료천원창산료측압력적실제분포규률급계산방법. 근거겁한평형이론, 수선득도산립체작용재단위주장적창벽상적합압력, 연후통과엄격적수학추도, 득도천원창측압력적분포규률. 결과표명, 본문결과여실창시험결과상부, 설명본문공식불론대평퇴환시추퇴도비교괄합, 이Rankine이론화Coulomb이론용우천원창균유결함.
Rankine theory and Coulomb theory are not suitable for the calculation of wall pressure by bulk materials, so this paper studies the actual distribution and calculation methods for the wall pressure in squat silos. Based on the limits equilibrium theory, the force on unit width of wall exerted by bulk materials is firstly obtained, and then the distribution of wall pressure is obtained by accurate mathematical deduction. It is proved that the results are in good agreement with those of the full-sized silo experiment, whether the top of the stored bulk materials is a horizontal plane or a conical pile.