安徽农业科学
安徽農業科學
안휘농업과학
JOURNAL OF ANHUI AGRICULTURAL SCIENCES
2010年
8期
4223-4225
,共3页
周健%杜文鹏%周建丁%李丽
週健%杜文鵬%週建丁%李麗
주건%두문붕%주건정%리려
白酒废水%动力学方程%厌氧流化床
白酒廢水%動力學方程%厭氧流化床
백주폐수%동역학방정%염양류화상
Distilled spirit wastewater%Dynamic equation%Anaerobic fluidized-bed
[目的]为厌氧流化床(AFB)的优化设计提供理论依据.[方法]采用自行设计的AFB反应器,废水水样取自某白酒厂的锅底水,接种污泥取自泸州老窖污水处理站的剩余活性污泥,通过建立数学模型对处理过程进行了动力学研究.[结果]利用Monod方程建立的基质降解速率动力学模型为μ=μ_(max)·S/(K_s+S),稳态下动力学模型为μ=(dX/dt)/X,式中μ为比增长速率(h~(-1)),X为微生物平均浓度(g/L);μ_(max)为最大比增长速率(h~(-1));Ks为饱和常数(g/L);S为反应器内基质浓度(g/L).μ=Kv,式中v为基质降解速率(g/(L·h));K为速度常数.基质降解速率与比增长速率的关系式为dS/dt=-(1/K)·(dX/dt)·X=-(1/K)·[μ_(max)·S/(K_s+S)]·X.白酒废水的气相色谱-质谱分析表明,其中含有高级脂肪酸和高级醇,影响基质降解速率和微生物生长速率.当废水中存在难厌氧生物降解物质时,Monod方程修正为μ=μ_(max)·(S-S_n)/[K_s+(S-S_n)],式中S_n 为难生物降解物质的浓度(g/L).试验结果的直线相关系数R为0.957 7.[结论]该研究为AFB在白酒废水处理中的应用奠定了理论基础.
[目的]為厭氧流化床(AFB)的優化設計提供理論依據.[方法]採用自行設計的AFB反應器,廢水水樣取自某白酒廠的鍋底水,接種汙泥取自瀘州老窖汙水處理站的剩餘活性汙泥,通過建立數學模型對處理過程進行瞭動力學研究.[結果]利用Monod方程建立的基質降解速率動力學模型為μ=μ_(max)·S/(K_s+S),穩態下動力學模型為μ=(dX/dt)/X,式中μ為比增長速率(h~(-1)),X為微生物平均濃度(g/L);μ_(max)為最大比增長速率(h~(-1));Ks為飽和常數(g/L);S為反應器內基質濃度(g/L).μ=Kv,式中v為基質降解速率(g/(L·h));K為速度常數.基質降解速率與比增長速率的關繫式為dS/dt=-(1/K)·(dX/dt)·X=-(1/K)·[μ_(max)·S/(K_s+S)]·X.白酒廢水的氣相色譜-質譜分析錶明,其中含有高級脂肪痠和高級醇,影響基質降解速率和微生物生長速率.噹廢水中存在難厭氧生物降解物質時,Monod方程脩正為μ=μ_(max)·(S-S_n)/[K_s+(S-S_n)],式中S_n 為難生物降解物質的濃度(g/L).試驗結果的直線相關繫數R為0.957 7.[結論]該研究為AFB在白酒廢水處理中的應用奠定瞭理論基礎.
[목적]위염양류화상(AFB)적우화설계제공이론의거.[방법]채용자행설계적AFB반응기,폐수수양취자모백주엄적과저수,접충오니취자로주로교오수처리참적잉여활성오니,통과건립수학모형대처리과정진행료동역학연구.[결과]이용Monod방정건립적기질강해속솔동역학모형위μ=μ_(max)·S/(K_s+S),은태하동역학모형위μ=(dX/dt)/X,식중μ위비증장속솔(h~(-1)),X위미생물평균농도(g/L);μ_(max)위최대비증장속솔(h~(-1));Ks위포화상수(g/L);S위반응기내기질농도(g/L).μ=Kv,식중v위기질강해속솔(g/(L·h));K위속도상수.기질강해속솔여비증장속솔적관계식위dS/dt=-(1/K)·(dX/dt)·X=-(1/K)·[μ_(max)·S/(K_s+S)]·X.백주폐수적기상색보-질보분석표명,기중함유고급지방산화고급순,영향기질강해속솔화미생물생장속솔.당폐수중존재난염양생물강해물질시,Monod방정수정위μ=μ_(max)·(S-S_n)/[K_s+(S-S_n)],식중S_n 위난생물강해물질적농도(g/L).시험결과적직선상관계수R위0.957 7.[결론]해연구위AFB재백주폐수처리중적응용전정료이론기출.
[Objective]The purpose was to provide theoretical foundation for the optimized design of anaerobic fluidized-bed (AFB). [Method]The self-designed AFB reactor was used, the wastewater samples were collected from the bottom pot water of a liquor factory, the seed sludge was collected from the residual activated sludge of sewage disposal station of Luzhou old cellar, and then the dynamic research was performed on the processing course by establishing mathematic model. [Result]By using Monod equation, the established dynamic model of degrading rate of medium was μ=μ_(max)·S/(K_s+S), and it was μ=(dX/dt)/X under steady state, in which μ meant specific incremental rate (h~(-1)), X meant average concn. Of microbes,μ_(max) meant maximum specific incremental rate (h~(-1)), Ks meant saturation constant (g/L) and S meant medium concn. In reactor (g/L). In the formulation μ=Kv, v meant degrading rate of medium (g/(L·h)) and K meant rate constant. The relational expression between the degrading rate of medium and the specific incremental rate was dS/dt=-(1/K)·(dX/dt)·X=-(1/K)· [μ_(max)·S/(K_s+S)]·X. The GC-MS analysis on distilled spirit wastewater showed that it contained higher fatty acid and higher alcohols which affected the degrading rate of medium and the growth rate of microbes. When there was refractory compound for anaerobic organism in wastewater, Monod equation was modified to be μ=μ_(max)·(S-S_n)/[K_s+(S-S_n)], in which S_n meant concn. Of biorefractory compound (g/L). The linear correlation coefficient (R) of experimental results was 0.957 7. [Conclusion]This research laid a theoretical foundation for the application of AFB in processing distilled spirit wastewater.