船舶与海洋工程学报(英文版)
船舶與海洋工程學報(英文版)
선박여해양공정학보(영문판)
JOURNAL OF MARINE SCIENCE AND APPLICATION
2011年
1期
113-120
,共8页
张银兵%赵俊渭%郭业才%李金明
張銀兵%趙俊渭%郭業纔%李金明
장은병%조준위%곽업재%리금명
linear prediction%blind equalization%channel identification%second order statistics%MMSE
The problem of blind adaptive equalization of underwater single-input multiple-output (SIMO)acoustic channels was analyzed by using the linear prediction method. Minimum mean square error (MMSE)blind equalizers with arbitrary delay were described on a basis of channel identification. Two methods for calculating linear MMSE equalizers were proposed. One was based on full channel identification and realized using RLS adaptive algorithms, and the other was based on the zero-delay MMSE equalizer and realized using LMS and RLS adaptive algorithms, respectively. Performance of the three proposed algorithms and comparison with two existing zero-forcing (ZF) equalization algorithms were investigated by simulations utilizing two underwater acoustic channels. The results show that the proposed algorithms are robust enough to channel order mismatch. They have almost the same performance as the corresponding ZF algorithms under a high signal-to-noise (SNR) ratio and better performance under a low SNR.