地学前缘
地學前緣
지학전연
2003年
4期
373-384
,共12页
燕山带%中国东部%中生代构造%埃达克质岩浆作用
燕山帶%中國東部%中生代構造%埃達剋質巖漿作用
연산대%중국동부%중생대구조%애체극질암장작용
Yanshan belt%eastern China%Mesozoic tectonics%adakitic magmatism
埃达克质火成岩在中国东部,包括燕山带是很常见的,一般认为它们是下地壳不均匀的镁铁质岩石及/或富集的上地幔岩石在高压(≥1.5 GPa)下部分熔融的结果.在燕山带内埃达克岩浆的形成有一个很长的时间(约190~80 Ma),然而岩浆活动的峰期却与约170~130 Ma间有基底岩石卷入的陆壳收缩期相一致.尽管埃达克质岩浆活动的历史很长,但那种把岩浆活动与岩石圈的拆沉效应相联系的模式似乎是不适当的.在该带内,埃达克质与非埃达克质岩浆活动有一部分是同时的,而且在地理分布上也是相间的,这说明了在下地壳和上地幔岩石的部分熔融中成分是相当不均匀的.侏罗纪及白垩纪熔融作用的热源应当是与古太平洋板块俯冲相关的中生代板底垫托的玄武岩浆.除了局部例外,在燕山带,埃达克质岩浆活动的终结和碱性岩浆活动的开始约在130~120 Ma,在此时期收缩作用使东亚大达200万km2以上的地区发生了NW-SE向的区域性伸展作用.强烈的地壳伸展仅局限于华北克拉通北缘分布的少数几个变质核杂岩中.陆壳的伸展减薄合理地解释了130~120 Ma间发生高压埃达克质熔融条件的终结,尽管还有局部年轻的埃达克火山活动(约120~80 Ma)可以在伸展规模有限而厚的地壳依然存在的地区继续出现.燕山区早白垩世的碱性侵入体中的锆石不存在前寒武纪陆壳岩石混染的证迹(与晚侏罗世埃达克质和非埃达克质岩体不同),这一事实与富集的幔源熔体迅速上升通过上覆减薄了地壳的论点相一致.
埃達剋質火成巖在中國東部,包括燕山帶是很常見的,一般認為它們是下地殼不均勻的鎂鐵質巖石及/或富集的上地幔巖石在高壓(≥1.5 GPa)下部分鎔融的結果.在燕山帶內埃達剋巖漿的形成有一箇很長的時間(約190~80 Ma),然而巖漿活動的峰期卻與約170~130 Ma間有基底巖石捲入的陸殼收縮期相一緻.儘管埃達剋質巖漿活動的歷史很長,但那種把巖漿活動與巖石圈的拆沉效應相聯繫的模式似乎是不適噹的.在該帶內,埃達剋質與非埃達剋質巖漿活動有一部分是同時的,而且在地理分佈上也是相間的,這說明瞭在下地殼和上地幔巖石的部分鎔融中成分是相噹不均勻的.侏囉紀及白堊紀鎔融作用的熱源應噹是與古太平洋闆塊俯遲相關的中生代闆底墊託的玄武巖漿.除瞭跼部例外,在燕山帶,埃達剋質巖漿活動的終結和堿性巖漿活動的開始約在130~120 Ma,在此時期收縮作用使東亞大達200萬km2以上的地區髮生瞭NW-SE嚮的區域性伸展作用.彊烈的地殼伸展僅跼限于華北剋拉通北緣分佈的少數幾箇變質覈雜巖中.陸殼的伸展減薄閤理地解釋瞭130~120 Ma間髮生高壓埃達剋質鎔融條件的終結,儘管還有跼部年輕的埃達剋火山活動(約120~80 Ma)可以在伸展規模有限而厚的地殼依然存在的地區繼續齣現.燕山區早白堊世的堿性侵入體中的鋯石不存在前寒武紀陸殼巖石混染的證跡(與晚侏囉世埃達剋質和非埃達剋質巖體不同),這一事實與富集的幔源鎔體迅速上升通過上覆減薄瞭地殼的論點相一緻.
애체극질화성암재중국동부,포괄연산대시흔상견적,일반인위타문시하지각불균균적미철질암석급/혹부집적상지만암석재고압(≥1.5 GPa)하부분용융적결과.재연산대내애체극암장적형성유일개흔장적시간(약190~80 Ma),연이암장활동적봉기각여약170~130 Ma간유기저암석권입적륙각수축기상일치.진관애체극질암장활동적역사흔장,단나충파암장활동여암석권적탁침효응상련계적모식사호시불괄당적.재해대내,애체극질여비애체극질암장활동유일부분시동시적,이차재지리분포상야시상간적,저설명료재하지각화상지만암석적부분용융중성분시상당불균균적.주라기급백성기용융작용적열원응당시여고태평양판괴부충상관적중생대판저점탁적현무암장.제료국부예외,재연산대,애체극질암장활동적종결화감성암장활동적개시약재130~120 Ma,재차시기수축작용사동아대체200만km2이상적지구발생료NW-SE향적구역성신전작용.강렬적지각신전부국한우화북극랍통북연분포적소수궤개변질핵잡암중.륙각적신전감박합리지해석료130~120 Ma간발생고압애체극질용융조건적종결,진관환유국부년경적애체극화산활동(약120~80 Ma)가이재신전규모유한이후적지각의연존재적지구계속출현.연산구조백성세적감성침입체중적고석불존재전한무기륙각암석혼염적증적(여만주라세애체극질화비애체극질암체불동),저일사실여부집적만원용체신속상승통과상복감박료지각적론점상일치.
Adakitic igneous rocks are common in eastern China, including the Yanshan belt. They are widely interpreted as the consequence of high pressure (≥1.5 GPa) partial melting of heterogeneous mafic lower crustal rocks and/or enriched upper mantle. Adakitic magmas were generated within the Yanshan belt over an extended period (ca. 190~80 Ma), although the peak of such magmatism coincided with basement-involved crustal contraction from ca 170~130 Ma. Given the long history of adakitic magmatism, scenarios relating such magmatism to the effects of lithospheric delamination seem to be inadequate. Adakitic and non-adakitic magmatism in the belt were in part contemporaneous and interspersed geographically. This argues for considerable compositional heterogeneity in lower crustal and upper mantle sources for partial melting. The most likely heat source for Jurassic and Cretaceous melting is judged to be underplated Mesozoic basaltic magmas related to subduction of a paleo-Pacific oceanic plate. With localized exceptions, adakitic magmatism in the Yanshan belt ended and alkalic magmatism began at about the time (ca. 130~120 Ma) when contraction was superceded by regional NW to SE extension in eastern Asia over more than two million square kilometers. Profound crustal extension was limited to a small number of metamorphic core complexes scattered across the northern margin of the North China craton. Extensional thinning of the continental crust can reasonably explain the general termination of high pressure adakitic melt conditions between 130 and 120 Ma, although localized younger adakitic volcanism (ca. 120~80 Ma) may have continued in areas where extension was limited and thick crust survived. Early Cretaceous alkalic plutons in the Yanshan belt show no zircon evidence for crustal assimilation of Precambrian rocks (unlike both Late Jurassic adakitic and non-adakitic plutons), an observation that is compatible with rapid ascent of enriched, mantle-generated melts through a thinned overlying crust.