原子与分子物理学报
原子與分子物理學報
원자여분자물이학보
CHINESE JOURNAL OF ATOMIC AND MOLECULAR PHYSICS
2009年
3期
489-494
,共6页
Wn团簇%密度泛函理论%最低能量结构%团簇幻数
Wn糰簇%密度汎函理論%最低能量結構%糰簇幻數
Wn단족%밀도범함이론%최저능량결구%단족환수
Wn clusters%DFT%lowest-energy structures%cluster magic number
分别利用密度泛函理论的LSDA方法和B3LYP 方法在有效核势基组(LanL2DZ)水平上系统地研究了Wn(n=2-14)团簇的结构和稳定性.Wn(n=2-14)团簇全局能量最小的最稳定结构被确定.结果表明:在所讨论的尺寸范围内,LSDA方法比B3LYP 方法得到的平均结合能与一阶能量差分高;大部分Wn(n=2-14) 团簇在两种方法计算下具有相同的几何结构.两种方法计算结果均表明:除了W3自旋多重度为3重态外,其余尺寸团簇的自旋多重度均为单重态;n=7的最低能量结构为双戴帽五边环,而非正十面体,n=8-10为笼型结构,n=11-14为扁长型结构.综合平均结合能、一阶能量差分和二阶能量差分,两种计算方法均表明Wn(n=2-14)团簇具有相同的幻数序列(2,6,9 和 13).
分彆利用密度汎函理論的LSDA方法和B3LYP 方法在有效覈勢基組(LanL2DZ)水平上繫統地研究瞭Wn(n=2-14)糰簇的結構和穩定性.Wn(n=2-14)糰簇全跼能量最小的最穩定結構被確定.結果錶明:在所討論的呎吋範圍內,LSDA方法比B3LYP 方法得到的平均結閤能與一階能量差分高;大部分Wn(n=2-14) 糰簇在兩種方法計算下具有相同的幾何結構.兩種方法計算結果均錶明:除瞭W3自鏇多重度為3重態外,其餘呎吋糰簇的自鏇多重度均為單重態;n=7的最低能量結構為雙戴帽五邊環,而非正十麵體,n=8-10為籠型結構,n=11-14為扁長型結構.綜閤平均結閤能、一階能量差分和二階能量差分,兩種計算方法均錶明Wn(n=2-14)糰簇具有相同的幻數序列(2,6,9 和 13).
분별이용밀도범함이론적LSDA방법화B3LYP 방법재유효핵세기조(LanL2DZ)수평상계통지연구료Wn(n=2-14)단족적결구화은정성.Wn(n=2-14)단족전국능량최소적최은정결구피학정.결과표명:재소토론적척촌범위내,LSDA방법비B3LYP 방법득도적평균결합능여일계능량차분고;대부분Wn(n=2-14) 단족재량충방법계산하구유상동적궤하결구.량충방법계산결과균표명:제료W3자선다중도위3중태외,기여척촌단족적자선다중도균위단중태;n=7적최저능량결구위쌍대모오변배,이비정십면체,n=8-10위롱형결구,n=11-14위편장형결구.종합평균결합능、일계능량차분화이계능량차분,량충계산방법균표명Wn(n=2-14)단족구유상동적환수서렬(2,6,9 화 13).
The structures and stabilities of Wn(n=2-14) clusters were systematic studied by using density functional theory (DFT) at LSDA/LanL2DZ level and B3LYP/LanL2DZ level.The most stable structures of Wn(n=2-14) clusters with global energy minimum were determined.Our results shown that the average binding energy and the first differences of total energy from LSDA/LanL2DZ level are higher than that from B3LYP/LanL2DZ level.For most of Wn (n=2-14) clusters,the same global energy minimum geometrical structures were detected by using these two different methods.Results get from the two methods both shown that the spin multiplicity of all ground states for Wn(n=2-14) clusters,but W3 (W3 is triplet),are singlet.The bicapped five side rings-like structure is the lowest-energy con-gurations for n=7,not the decahedron geometry,and cage-like structures for n=8-10,prolate-like structures for n=11-14.The average binding energy,the first and second differences of total energy versus the sizes were all discussed.The same magic numbers (n=2,6,9 and 13) of Wn(n=2-14) clusters were obtained for the two different methods.