工程数学学报
工程數學學報
공정수학학보
CHINESE JOURNAL OF ENGINEERING MATHEMATICS
2010年
4期
720-730
,共11页
随机递归神经网络%变时滞%随机指数稳定性%样本Lyapunov指数
隨機遞歸神經網絡%變時滯%隨機指數穩定性%樣本Lyapunov指數
수궤체귀신경망락%변시체%수궤지수은정성%양본Lyapunov지수
stochastic recurrent neural networks%time-varying delays%almost sure exponential stabil-ity%sample Lyapunov exponent
利用非负鞅收敛定理、Lyapunov 泛函方法和网络自身的特性讨论了变时滞随机递归神经网络的随机指数稳定性,给出了这类神经网络随机指数稳定性的新的代数准则,所给代数准则简单易用.两个应用实例说明即使针对随机Hopfield 神经网络所给的代数准则也优于相关的判别准则.
利用非負鞅收斂定理、Lyapunov 汎函方法和網絡自身的特性討論瞭變時滯隨機遞歸神經網絡的隨機指數穩定性,給齣瞭這類神經網絡隨機指數穩定性的新的代數準則,所給代數準則簡單易用.兩箇應用實例說明即使針對隨機Hopfield 神經網絡所給的代數準則也優于相關的判彆準則.
이용비부앙수렴정리、Lyapunov 범함방법화망락자신적특성토론료변시체수궤체귀신경망락적수궤지수은정성,급출료저류신경망락수궤지수은정성적신적대수준칙,소급대수준칙간단역용.량개응용실례설명즉사침대수궤Hopfield 신경망락소급적대수준칙야우우상관적판별준칙.
The almost exponential stability for a stochastic recurrent neural network with time-varying delays is discussed by means of a nonnegative semi-martingale convergence theorem, the Lyapunov functional method and the characteristics of stochastic delay recurrent neural networks. The new algebraic criteria of the almost exponential stability for the stochastic recurrent neural network with time-varying delays is derived. These algebraic criteria are simple and practical. Two examples show these new algebraic criteria are better than the relative criteria for the stochastic Hopfield neural network.