中国组织工程研究与临床康复
中國組織工程研究與臨床康複
중국조직공정연구여림상강복
JOURNAL OF CLINICAL REHABILITATIVE TISSUE ENGINEERING RESEARCH
2008年
10期
1954-1957
,共4页
马艳%岳秀丽%刘萌%彭涛%刘绍琴%戴志飞
馬豔%嶽秀麗%劉萌%彭濤%劉紹琴%戴誌飛
마염%악수려%류맹%팽도%류소금%대지비
膨体聚四氟乙烯人工血管%肝素%抗凝血%表面修饰
膨體聚四氟乙烯人工血管%肝素%抗凝血%錶麵脩飾
팽체취사불을희인공혈관%간소%항응혈%표면수식
背景:虽然膨体聚四氟乙烯人工血管植入体具有易于缝合、质地柔软和抗压迫等诸多优良性能,但由于血栓形成等原因,使这些材料的应用受限.为了解决前述问题,目前的工作主要集中在对现有人工血管材料表面修饰与改性上,最终使其达到血管植入的要求.目的:用共价交联的肝素-海藻酸钠水凝胶对小口径膨体聚四氟乙烯人工血管进行表面修饰和改性,考察其血液相容性和组织相容性.设计:观察性实验.单位:哈尔滨工业大学生物医学工程中心,纳米医药与生物传感器实验室.材料:实验所用直径4 mm的膨体聚四氟乙烯人工血管为W.L Gore & Associates,Inc.产品,海藻酸钠和1-乙基-3.3-二甲基氨丙基碳化二亚胺购自美国Sigma公司,肝素购于Calbiochem公司,全氟磺酸和壳聚糖购于美国Aldrich公司.人α-凝血酶和抗凝血酶Ⅲ购于Haematologic Technologies,S-2238购于Chromogenix.方法:实验于2006-05/2007-06在哈尔滨工业大学生物医学工程中心的纳米医药与生物传感器实验室完成.首先用全氟磺酸修饰膨体聚四氟乙烯表面,然后用肝素-海藻酸钠凝胶进行灌注修饰,以乙二胺为交联剂,1-乙基-3-3-二甲基氨丙基碳化二亚胺为引发剂,将多糖分子进行共价交联.用接触角表征了涂层前后人工血管表面亲水性能的变化,扫描电镜表征了材料表面形貌及血小板黏附,衰减全反射-傅立叶变换红外光谱表征了材料表面的化学结构,然后用活化部分凝血激酶时间、凝血酶原时间、溶血试验以及凝血酶失活试验表征了涂层后人工血管表面的血液相容性.主要观察指标:①接触角.②用扫描电镜表征材料表面形貌及血小板黏附情况.③衰减全反射-傅立叶变换红外光谱.④活化部分凝血激酶时间、凝血酶原时间.⑤溶血度.⑥凝血酶失活试验.结果:①修饰后的人工血管,衰减全反射-傅立叶变换红外光谱结果显示在1 626 cm-1处出现了-CO-NH-基团的峰位.②修饰后人工血管的接触角由(125±1)°降低为(84±2)°.③修饰后的人工血管,具有较长的活化部分凝血激酶时间和凝血酶原时间、较低的溶血度0.065%、较少数量的血小板黏附.④凝血酶失活实验结果显示,凝胶灌注修饰后的人工血管,对凝血酶的活性有较强的抑制作用,因此具有血栓形成的性能且稳定性好.结论:肝素-海藻酸钠凝胶修饰的膨体聚四氟乙烯具有良好血液相容性及组织相容性,可应用于小口径人工血管.
揹景:雖然膨體聚四氟乙烯人工血管植入體具有易于縫閤、質地柔軟和抗壓迫等諸多優良性能,但由于血栓形成等原因,使這些材料的應用受限.為瞭解決前述問題,目前的工作主要集中在對現有人工血管材料錶麵脩飾與改性上,最終使其達到血管植入的要求.目的:用共價交聯的肝素-海藻痠鈉水凝膠對小口徑膨體聚四氟乙烯人工血管進行錶麵脩飾和改性,攷察其血液相容性和組織相容性.設計:觀察性實驗.單位:哈爾濱工業大學生物醫學工程中心,納米醫藥與生物傳感器實驗室.材料:實驗所用直徑4 mm的膨體聚四氟乙烯人工血管為W.L Gore & Associates,Inc.產品,海藻痠鈉和1-乙基-3.3-二甲基氨丙基碳化二亞胺購自美國Sigma公司,肝素購于Calbiochem公司,全氟磺痠和殼聚糖購于美國Aldrich公司.人α-凝血酶和抗凝血酶Ⅲ購于Haematologic Technologies,S-2238購于Chromogenix.方法:實驗于2006-05/2007-06在哈爾濱工業大學生物醫學工程中心的納米醫藥與生物傳感器實驗室完成.首先用全氟磺痠脩飾膨體聚四氟乙烯錶麵,然後用肝素-海藻痠鈉凝膠進行灌註脩飾,以乙二胺為交聯劑,1-乙基-3-3-二甲基氨丙基碳化二亞胺為引髮劑,將多糖分子進行共價交聯.用接觸角錶徵瞭塗層前後人工血管錶麵親水性能的變化,掃描電鏡錶徵瞭材料錶麵形貌及血小闆黏附,衰減全反射-傅立葉變換紅外光譜錶徵瞭材料錶麵的化學結構,然後用活化部分凝血激酶時間、凝血酶原時間、溶血試驗以及凝血酶失活試驗錶徵瞭塗層後人工血管錶麵的血液相容性.主要觀察指標:①接觸角.②用掃描電鏡錶徵材料錶麵形貌及血小闆黏附情況.③衰減全反射-傅立葉變換紅外光譜.④活化部分凝血激酶時間、凝血酶原時間.⑤溶血度.⑥凝血酶失活試驗.結果:①脩飾後的人工血管,衰減全反射-傅立葉變換紅外光譜結果顯示在1 626 cm-1處齣現瞭-CO-NH-基糰的峰位.②脩飾後人工血管的接觸角由(125±1)°降低為(84±2)°.③脩飾後的人工血管,具有較長的活化部分凝血激酶時間和凝血酶原時間、較低的溶血度0.065%、較少數量的血小闆黏附.④凝血酶失活實驗結果顯示,凝膠灌註脩飾後的人工血管,對凝血酶的活性有較彊的抑製作用,因此具有血栓形成的性能且穩定性好.結論:肝素-海藻痠鈉凝膠脩飾的膨體聚四氟乙烯具有良好血液相容性及組織相容性,可應用于小口徑人工血管.
배경:수연팽체취사불을희인공혈관식입체구유역우봉합、질지유연화항압박등제다우량성능,단유우혈전형성등원인,사저사재료적응용수한.위료해결전술문제,목전적공작주요집중재대현유인공혈관재료표면수식여개성상,최종사기체도혈관식입적요구.목적:용공개교련적간소-해조산납수응효대소구경팽체취사불을희인공혈관진행표면수식화개성,고찰기혈액상용성화조직상용성.설계:관찰성실험.단위:합이빈공업대학생물의학공정중심,납미의약여생물전감기실험실.재료:실험소용직경4 mm적팽체취사불을희인공혈관위W.L Gore & Associates,Inc.산품,해조산납화1-을기-3.3-이갑기안병기탄화이아알구자미국Sigma공사,간소구우Calbiochem공사,전불광산화각취당구우미국Aldrich공사.인α-응혈매화항응혈매Ⅲ구우Haematologic Technologies,S-2238구우Chromogenix.방법:실험우2006-05/2007-06재합이빈공업대학생물의학공정중심적납미의약여생물전감기실험실완성.수선용전불광산수식팽체취사불을희표면,연후용간소-해조산납응효진행관주수식,이을이알위교련제,1-을기-3-3-이갑기안병기탄화이아알위인발제,장다당분자진행공개교련.용접촉각표정료도층전후인공혈관표면친수성능적변화,소묘전경표정료재료표면형모급혈소판점부,쇠감전반사-부립협변환홍외광보표정료재료표면적화학결구,연후용활화부분응혈격매시간、응혈매원시간、용혈시험이급응혈매실활시험표정료도층후인공혈관표면적혈액상용성.주요관찰지표:①접촉각.②용소묘전경표정재료표면형모급혈소판점부정황.③쇠감전반사-부립협변환홍외광보.④활화부분응혈격매시간、응혈매원시간.⑤용혈도.⑥응혈매실활시험.결과:①수식후적인공혈관,쇠감전반사-부립협변환홍외광보결과현시재1 626 cm-1처출현료-CO-NH-기단적봉위.②수식후인공혈관적접촉각유(125±1)°강저위(84±2)°.③수식후적인공혈관,구유교장적활화부분응혈격매시간화응혈매원시간、교저적용혈도0.065%、교소수량적혈소판점부.④응혈매실활실험결과현시,응효관주수식후적인공혈관,대응혈매적활성유교강적억제작용,인차구유혈전형성적성능차은정성호.결론:간소-해조산납응효수식적팽체취사불을희구유량호혈액상용성급조직상용성,가응용우소구경인공혈관.
BACKGROUND: The expanded polytetrafluoroethylene (ePTFE) vascular grafts hold promise for enhanced healing,extended suture retention, kink reduction and compression resistance. But thrombus formation still limits its use for revascularization of small-caliber vessels. It is the surface of ePTFE vascular graft that contacts with the blood. The current study focused on surface modification of ePTFE materials to improve its blood compatibility.OBJECTIVE: To characterize the heparin/alginate (H/A) gel modified ePTFE vascular graft and investigate the hemocompatibility and histocompatibility of the graft.DESIGN: Observation experiment.SETTING: Laboratory for Nanomedicine and Biosensor, Biomedicine Engineering Center, Harbin Institute of Technology.MATERIALS: The GORE-TEX ePTFE vascular grafts were 4 mm in internal diameter. Sodium alginate and 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC) were purchased from Sigma. Heparin sodium salt was obtained from Calbiochem. Nation and chitosan were purchased from Aldrich company. Human α-thrombin and AT Ⅲ were purchased from Haematologic Technologies, Inc. S-2238 was purchased from Chromogenix.METHODS: This study was performed at the Laboratory for Nanomedicine and Biosensor, Biomedicine Engineering Center, Harbin Institute of Technology between May 2006 and June 2007. The graft was first modified with Nation and then Chitosan/Nafion/Chitosan multilayer. Following the impregnation of heparin and alginate, covalent crosslinking was performed using ethylenediamine and EDC. Some characterization methods were employed: stastic water contact angle for the hydrophilicity; SEM for the surface morphology; ATR-FTIR for the surface chemical characteristics; APTT and PT,percent hemolysis and Chromogenic assay for the hemocompatibility of the ePTFE vascular graft after modification.MAIN OUTCOME MEASURES: ①Static water contact angles. ②Charactedzation of the surface morphology and platelet adhesion by SEM. ③ATR-FTIR ④APTT and PT. ⑤Percent hemolysis ⑥Chromogenic assay for heparin activity.RESULTS: ①ATR-FTIR revealed the presence of -CO-NH- at 1626 cm-1. ②The water contact angle was greatly decreased from (125±1)° to (84±2)° .③The prolonged APTT and PT, low percent hemolysis(0.065%) and low amount of platelet adhesion assay showed the H/A gel impregnated graft had good blood compatibility. ④Chromogenic assay showed the modified graft was less thrombogenic than the bare one, and the H/A coating had good stability in. PBS buffer.CONCLUSION: The H/A modified ePTFE vascular graft has great potential in applications utilizing small-diameter vascular grafts.