热加工工艺
熱加工工藝
열가공공예
HOT WORKING TECHNOLOGY
2009年
18期
127-131
,共5页
不锈钢丝%热处理%同复%形变孪晶%逆转变
不鏽鋼絲%熱處理%同複%形變孿晶%逆轉變
불수강사%열처리%동복%형변련정%역전변
stainless steel wire%heat treatment%recovery%deformation twin%reverse transformation
对面缩率分别为36%、67.3%与84%的00Cr18Ni10N冷拔不锈钢丝进行热处理.并对处理后的试样进行拉伸试验、磁性实验与显微组织观察.结果表明:对于α'含量较少的00Cr18Ni10N,通过热处理可使该钢丝的抗拉强度维持在1000 MPa,伸长率达到10%以上.回复过程中形变孪品等形变组织的稳定存在是使强度保持稳定的主要原因,伸长率的提高则是由于在热处理过程中空位等点缺陷的湮灭与重组所致;对α'含量较高的00Cr18Ni10N,热处理过程中首先发生逆转变,随α'含量的减少,抗拉强度由冷拔态的最高值下降到1300 MPa.逆转变过程中伸长率没有明显的提高,逆转变结束之后伸长率开始上升.当抗拉强度下降到900MPa时,伸长率可提高到30%,这是由于经大变形热处理后,在再结晶初期形成了细小的等轴品粒所致.
對麵縮率分彆為36%、67.3%與84%的00Cr18Ni10N冷拔不鏽鋼絲進行熱處理.併對處理後的試樣進行拉伸試驗、磁性實驗與顯微組織觀察.結果錶明:對于α'含量較少的00Cr18Ni10N,通過熱處理可使該鋼絲的抗拉彊度維持在1000 MPa,伸長率達到10%以上.迴複過程中形變孿品等形變組織的穩定存在是使彊度保持穩定的主要原因,伸長率的提高則是由于在熱處理過程中空位等點缺陷的湮滅與重組所緻;對α'含量較高的00Cr18Ni10N,熱處理過程中首先髮生逆轉變,隨α'含量的減少,抗拉彊度由冷拔態的最高值下降到1300 MPa.逆轉變過程中伸長率沒有明顯的提高,逆轉變結束之後伸長率開始上升.噹抗拉彊度下降到900MPa時,伸長率可提高到30%,這是由于經大變形熱處理後,在再結晶初期形成瞭細小的等軸品粒所緻.
대면축솔분별위36%、67.3%여84%적00Cr18Ni10N랭발불수강사진행열처리.병대처리후적시양진행랍신시험、자성실험여현미조직관찰.결과표명:대우α'함량교소적00Cr18Ni10N,통과열처리가사해강사적항랍강도유지재1000 MPa,신장솔체도10%이상.회복과정중형변련품등형변조직적은정존재시사강도보지은정적주요원인,신장솔적제고칙시유우재열처리과정중공위등점결함적인멸여중조소치;대α'함량교고적00Cr18Ni10N,열처리과정중수선발생역전변,수α'함량적감소,항랍강도유랭발태적최고치하강도1300 MPa.역전변과정중신장솔몰유명현적제고,역전변결속지후신장솔개시상승.당항랍강도하강도900MPa시,신장솔가제고도30%,저시유우경대변형열처리후,재재결정초기형성료세소적등축품립소치.
Cold drawn stainless steel (00Cr18Ni10N) wires with different reductions of area (36%,67.3% and 84%) were heat treated at different temperature.The tensile test,magnetic test and microstructure observation of sample were carried out.The results show that:While the wire has little content of α', deformation twins and the other deformation structures which have stability in recovery keep the wire with a high strength (1000 MPa). An increased elongation (above 10%) can be gained from recovery. While the wire contains much α', the reverse transformation ( α→γ) occurs firstly. Tensile strength decreases (to 1300 MPa) along with the decrease of α'. The elongation doesn't improve obviously until the reverse transformation is finished. The elongation can be improved to 30% when the tensile strength decreases to 900 MPa, and this improvement owes to the fine equiaxed grains which forms at the initial stage of recrystallization.