纳米技术与精密工程
納米技術與精密工程
납미기술여정밀공정
NANOTECHNOLOGY AND PRECISION ENGINEERING
2010年
3期
231-234
,共4页
李发堂%刘英%李振杰%刘瑞红%殷蓉
李髮堂%劉英%李振傑%劉瑞紅%慇蓉
리발당%류영%리진걸%류서홍%은용
光催化剂%铁酸镧%钙钛矿%可见光催化活性%Nd掺杂
光催化劑%鐵痠鑭%鈣鈦礦%可見光催化活性%Nd摻雜
광최화제%철산란%개태광%가견광최화활성%Nd참잡
photocatalyst%LaFeO3%perovskite%visible-light photocatalytic activity%Nd doping
采用柠檬酸络合法于600 ℃煅烧2 h合成了钙钛矿型La1-xNdxFeO3 (x=0,0.05,0.10,0.15,0.20,0.25)纳米光催化剂,并利用X射线能谱(EDS)、热重-差热(TG-DTA)、X射线衍射(XRD)、扫描电镜(SEM)以及紫外可见漫反射吸收光谱(UV-Vis DRS)等技术进行了表征,以次甲基蓝为目标降解物、以荧光灯模拟可见光源考察了Nd掺杂量对其可见光催化活性的影响.结果表明,Nd已经掺入LaFeO3晶体中,Nd的最佳掺杂量为x=0.1. La0.9Nd0.1-FeO3光催化剂可将次甲基蓝1 h降解率由未掺杂的56.0%提高到80.4%,这是由于掺杂后粉体粒径由20.2 nm减小到16.9 nm,表面原子比例增加以及掺杂后纳米粉体在可见光区的吸收增强所致.
採用檸檬痠絡閤法于600 ℃煅燒2 h閤成瞭鈣鈦礦型La1-xNdxFeO3 (x=0,0.05,0.10,0.15,0.20,0.25)納米光催化劑,併利用X射線能譜(EDS)、熱重-差熱(TG-DTA)、X射線衍射(XRD)、掃描電鏡(SEM)以及紫外可見漫反射吸收光譜(UV-Vis DRS)等技術進行瞭錶徵,以次甲基藍為目標降解物、以熒光燈模擬可見光源攷察瞭Nd摻雜量對其可見光催化活性的影響.結果錶明,Nd已經摻入LaFeO3晶體中,Nd的最佳摻雜量為x=0.1. La0.9Nd0.1-FeO3光催化劑可將次甲基藍1 h降解率由未摻雜的56.0%提高到80.4%,這是由于摻雜後粉體粒徑由20.2 nm減小到16.9 nm,錶麵原子比例增加以及摻雜後納米粉體在可見光區的吸收增彊所緻.
채용저몽산락합법우600 ℃단소2 h합성료개태광형La1-xNdxFeO3 (x=0,0.05,0.10,0.15,0.20,0.25)납미광최화제,병이용X사선능보(EDS)、열중-차열(TG-DTA)、X사선연사(XRD)、소묘전경(SEM)이급자외가견만반사흡수광보(UV-Vis DRS)등기술진행료표정,이차갑기람위목표강해물、이형광등모의가견광원고찰료Nd참잡량대기가견광최화활성적영향.결과표명,Nd이경참입LaFeO3정체중,Nd적최가참잡량위x=0.1. La0.9Nd0.1-FeO3광최화제가장차갑기람1 h강해솔유미참잡적56.0%제고도80.4%,저시유우참잡후분체립경유20.2 nm감소도16.9 nm,표면원자비례증가이급참잡후납미분체재가견광구적흡수증강소치.
Nano-photocatalysts of La1-xNdxFeO3 (x=0, 0.05, 0.10, 0.15, 0.20, 0.25) with perovskite-type structure have been prepared by citric acid complex method at 600 °C for 2 h. The prepared pure and Nd-doped LaFeO3 powders were characterized by energy dispersive X-ray spectrometer (EDS), thermogravimetry-differential thermal analysis (TG-DTA), X-ray diffraction (XRD), scanning electron microscope (SEM) and ultraviolet-visible diffuse reflection spectra (UV-Vis DRS). The visible-light photocatalytic activity of the photocatalysts was tested with methylene blue as an objective decomposition substance using fluorescence light as a visible light resource. The results show that Nd element is doped into the lattice of La element in LaFeO3. The optimum doping concentration of Nd is 0.1 and the degradation rate of methylene blue is improved from 56.0% to 80.4% for 1 h photoirradiation when La0.9 Nd0.1FeO3 served as the photocatalyst instead of LaFeO3. The reasons are that the particle size decreases from 20.2 nm to 16.9 nm, leading to more surface atoms on La0.9 Nd0.1FeO3 powders and that visible-light absorption capacity increases after doping.