河南大学学报(自然科学版)
河南大學學報(自然科學版)
하남대학학보(자연과학판)
JOURNAL OF HENAN UNIVERSITY(NATURAL SCIENCE)
2009年
1期
6-9
,共4页
效用函数%黎曼几何%边际效用函数趋势
效用函數%黎曼幾何%邊際效用函數趨勢
효용함수%려만궤하%변제효용함수추세
utility function%Riemannian geometry%tendency of generalized marginal utility
运用黎曼几何的方法证明了效用函数的存在性,引进了广义的边际效用趋势概念,该定义揭示了以效用函数为度量与一般的欧氏度量的偏离,并证明了这个定义是内蕴的.
運用黎曼幾何的方法證明瞭效用函數的存在性,引進瞭廣義的邊際效用趨勢概唸,該定義揭示瞭以效用函數為度量與一般的歐氏度量的偏離,併證明瞭這箇定義是內蘊的.
운용려만궤하적방법증명료효용함수적존재성,인진료엄의적변제효용추세개념,해정의게시료이효용함수위도량여일반적구씨도량적편리,병증명료저개정의시내온적.
This paper proves the existence of utility function by using Riemannian geometry methods, which build a bridge between Riemannian geometry and economics. The tendency of generalized marginal utility function is defined, indicating the departure from the Euclidean metric. The definition proves intrinsical.