华中农业大学学报
華中農業大學學報
화중농업대학학보
JOURNAL OF HUAZHONG AGRICULTURAL UNIVERSITY
2009年
6期
767-770
,共4页
竹片%Bayes分类器%颜色分级%机器视觉
竹片%Bayes分類器%顏色分級%機器視覺
죽편%Bayes분류기%안색분급%궤기시각
bamboo slice%Bayes classifier%color classification%machine vision
为了采用机器视觉对竹片自动识别与颜色分选,研究了一种基于竹片图像颜色特征与纹路特征和Bayes分类器的颜色分类方法.首先,对灰度图像采用Canny算子进行边缘检测,再利用Hough变换对竹片进行边缘定位,并对倾斜竹片实施旋转校正,以确定待检测竹片在图像中的具体位置.根据竹片的位置提取竹片区域平均颜色特征及纹路特征,将其作为样本的属性特征,采用Bayes训练的颜色等级作为输出,建立特征参数与颜色等级之间的Bayes分类器,上位机获得分级信号后经串口通过下位机实现竹片的自动分级.试验结果表明,该方法对竹片颜色检测准确率达到91.7%,可为竹制品行业的竹片颜色自动在线检测提供理论依据.
為瞭採用機器視覺對竹片自動識彆與顏色分選,研究瞭一種基于竹片圖像顏色特徵與紋路特徵和Bayes分類器的顏色分類方法.首先,對灰度圖像採用Canny算子進行邊緣檢測,再利用Hough變換對竹片進行邊緣定位,併對傾斜竹片實施鏇轉校正,以確定待檢測竹片在圖像中的具體位置.根據竹片的位置提取竹片區域平均顏色特徵及紋路特徵,將其作為樣本的屬性特徵,採用Bayes訓練的顏色等級作為輸齣,建立特徵參數與顏色等級之間的Bayes分類器,上位機穫得分級信號後經串口通過下位機實現竹片的自動分級.試驗結果錶明,該方法對竹片顏色檢測準確率達到91.7%,可為竹製品行業的竹片顏色自動在線檢測提供理論依據.
위료채용궤기시각대죽편자동식별여안색분선,연구료일충기우죽편도상안색특정여문로특정화Bayes분류기적안색분류방법.수선,대회도도상채용Canny산자진행변연검측,재이용Hough변환대죽편진행변연정위,병대경사죽편실시선전교정,이학정대검측죽편재도상중적구체위치.근거죽편적위치제취죽편구역평균안색특정급문로특정,장기작위양본적속성특정,채용Bayes훈련적안색등급작위수출,건립특정삼수여안색등급지간적Bayes분류기,상위궤획득분급신호후경천구통과하위궤실현죽편적자동분급.시험결과표명,해방법대죽편안색검측준학솔체도91.7%,가위죽제품행업적죽편안색자동재선검측제공이론의거.
Using the color and texture characters of bamboo slices and Bayes classifier,a new color classification method was studied to realize sliced bamboo's automatic recognition and color classification based on machine vision.Through Canny operator the edges of the sliced bamboo in gray image were detected,and then using Hough transformation the edges were located.For those edge slopes that were not vertical in the image,rotation revise was performed to get their exact locations in the image,based on which the characters of mean color feature and vein image feature were extracted as the character features of samples.With Bayes-trained color classification grades as the output vector.the Bayes classifier was set up between mean feature values and color grades.After the host computer obtaining the classification signal,the auto classifying of bamboo slices was realized through slave computer subsystem by the serial port.The results show that classifier's precision rate is 92% for color detection of bamboo slices.The system realizes the on-line automatic recognition of bamboo slices' color.