阜阳师范学院学报:自然科学版
阜暘師範學院學報:自然科學版
부양사범학원학보:자연과학판
Journal of Fuyang Teachers College:Natural Science
2011年
4期
22-23,34
,共3页
Hamilton图%谱半径%闭包%Hamilton圈
Hamilton圖%譜半徑%閉包%Hamilton圈
Hamilton도%보반경%폐포%Hamilton권
Hamihon graph%spectral radius%closure%Hamilton cycle
从图G的闭包理论角度去研究图的Hamilton性。利用图的补图谱半径的界,讨论了Hamilton图存在的谱条件,证明了n阶图G,如果它的补图的谱半径小于或等于(n-3)的算术平方根,则G是Hamilton图。
從圖G的閉包理論角度去研究圖的Hamilton性。利用圖的補圖譜半徑的界,討論瞭Hamilton圖存在的譜條件,證明瞭n階圖G,如果它的補圖的譜半徑小于或等于(n-3)的算術平方根,則G是Hamilton圖。
종도G적폐포이론각도거연구도적Hamilton성。이용도적보도보반경적계,토론료Hamilton도존재적보조건,증명료n계도G,여과타적보도적보반경소우혹등우(n-3)적산술평방근,칙G시Hamilton도。
The Hamihonicity is studied from the closure theory of a graph G. We discuss some spectral conditions for the existence of Hamilton graph by using bounds of spectral radius of the Complement of a graph, and show that if G is a graph of order n with spectral radius of its complement is less than or equal to the arithmetic square root of ( n - 3) , then G is a Hamilton graph.