物理化学学报
物理化學學報
물이화학학보
ACTA PHYSICO-CHIMICA SINICA
2010年
3期
714-720
,共7页
振动光谱探针%混合量子-经典动力学%单壁碳纳米管%振动弛豫时间%振动频率位移
振動光譜探針%混閤量子-經典動力學%單壁碳納米管%振動弛豫時間%振動頻率位移
진동광보탐침%혼합양자-경전동역학%단벽탄납미관%진동이예시간%진동빈솔위이
Vibrational spectral probe%Mixed quantum-classical molecular dynamics%Single-walled carbon nanotube%Vibrational relaxation time%Vibrational frequency shift
利用混合量子-经典动力学模拟方法,考察了不同管径的单壁碳纳米管(SWCT)中受限溶剂氩的径向分布以及溶质I_2分子的振动弛豫动力学,给出了I_2分子的振动频率位移、振动弛豫时间随受限碳纳米管管径尺寸变化的关系.以I_2分子的振动频率位移为探针,根据I_2分子与周围环境作用的实时信息,分析了管壁、受限溶剂对光谱探针的贡献,在原子、分子层次上揭示了诱导频率位移的微观机制;此外,通过分析探针光谱的敏感性以及探针分子频率位移与振动弛豫时间的关系,进一步阐明了振动频率位移是考察受限凝聚相中分子间相互作用的较好的探针.
利用混閤量子-經典動力學模擬方法,攷察瞭不同管徑的單壁碳納米管(SWCT)中受限溶劑氬的徑嚮分佈以及溶質I_2分子的振動弛豫動力學,給齣瞭I_2分子的振動頻率位移、振動弛豫時間隨受限碳納米管管徑呎吋變化的關繫.以I_2分子的振動頻率位移為探針,根據I_2分子與週圍環境作用的實時信息,分析瞭管壁、受限溶劑對光譜探針的貢獻,在原子、分子層次上揭示瞭誘導頻率位移的微觀機製;此外,通過分析探針光譜的敏感性以及探針分子頻率位移與振動弛豫時間的關繫,進一步闡明瞭振動頻率位移是攷察受限凝聚相中分子間相互作用的較好的探針.
이용혼합양자-경전동역학모의방법,고찰료불동관경적단벽탄납미관(SWCT)중수한용제아적경향분포이급용질I_2분자적진동이예동역학,급출료I_2분자적진동빈솔위이、진동이예시간수수한탄납미관관경척촌변화적관계.이I_2분자적진동빈솔위이위탐침,근거I_2분자여주위배경작용적실시신식,분석료관벽、수한용제대광보탐침적공헌,재원자、분자층차상게시료유도빈솔위이적미관궤제;차외,통과분석탐침광보적민감성이급탐침분자빈솔위이여진동이예시간적관계,진일보천명료진동빈솔위이시고찰수한응취상중분자간상호작용적교호적탐침.
The radial distributions of argon as a solvent as well as the vibrational relaxation dynamics of the solute I_2 confined in a single-walled carbon nanotube (SWCT) were investigated by mixed quantum-classical molecular dynamics simulations. Functions of the vibrational frequency shift and the vibrational relaxation time of I_2 with varying radii were presented. Using the frequency shift of I_2 as a spectral probe, an analysis of the instantaneous interactions of I_2 with the surroundings was determined by breaking down the shift into the contributions of the nanotube and the solvent atoms. Detailed mechanistic information related to the shift was investigated at the atomic and molecular level. In addition, by analysis of the sensitivity of the spectral probe and the dependence of the frequency shift on the vibrational relaxation time of the probe molecule, we conclude that the frequency shift is a good spectral probe to investigate the interactions in confined condensed phases.