纳米技术与精密工程
納米技術與精密工程
납미기술여정밀공정
NANOTECHNOLOGY AND PRECISION ENGINEERING
2010年
2期
171-176
,共6页
胡放荣%王爱娜%邱传凯%姚军
鬍放榮%王愛娜%邱傳凱%姚軍
호방영%왕애나%구전개%요군
微机电系统%微镜%静电驱动器%表面微加工
微機電繫統%微鏡%靜電驅動器%錶麵微加工
미궤전계통%미경%정전구동기%표면미가공
microelectromechanical system (MEMS)%micromirror%electrostatic actuator%surface micromachining
为消除静电吸引型微镜因存在静电吸合效应而导致的短路现象,基于电场的非均匀分布可以产生静电排斥力的原理,设计了一种静电排斥型六边形微机械反射镜.微镜包含7组驱动电极,最大的一组驱动电极由镜面和其正下方的六边形下电极组成,其他6组分别位于微镜的各条边上,其中3组为梳齿结构,另外3组为U形弹簧,镜面由3组U形弹簧支撑.利用有限元软件对微镜频率响应和暂态响应特性进行了仿真,结果表明谐振频率高达7 kHz,暂态响应时间小于0.000 3 s.利用表面硅工艺加工出了样片,并用白光干涉仪对其静态位移特性进行了测试,在50 V直流电压下微镜位移量为0.7 μm.由结果可知该微镜可消除静电吸合效应.故该微镜不仅可用于对反射光进行光程和相位的调制,也可用于自适应光学系统中波前畸变的校正.
為消除靜電吸引型微鏡因存在靜電吸閤效應而導緻的短路現象,基于電場的非均勻分佈可以產生靜電排斥力的原理,設計瞭一種靜電排斥型六邊形微機械反射鏡.微鏡包含7組驅動電極,最大的一組驅動電極由鏡麵和其正下方的六邊形下電極組成,其他6組分彆位于微鏡的各條邊上,其中3組為梳齒結構,另外3組為U形彈簧,鏡麵由3組U形彈簧支撐.利用有限元軟件對微鏡頻率響應和暫態響應特性進行瞭倣真,結果錶明諧振頻率高達7 kHz,暫態響應時間小于0.000 3 s.利用錶麵硅工藝加工齣瞭樣片,併用白光榦涉儀對其靜態位移特性進行瞭測試,在50 V直流電壓下微鏡位移量為0.7 μm.由結果可知該微鏡可消除靜電吸閤效應.故該微鏡不僅可用于對反射光進行光程和相位的調製,也可用于自適應光學繫統中波前畸變的校正.
위소제정전흡인형미경인존재정전흡합효응이도치적단로현상,기우전장적비균균분포가이산생정전배척력적원리,설계료일충정전배척형륙변형미궤계반사경.미경포함7조구동전겁,최대적일조구동전겁유경면화기정하방적륙변형하전겁조성,기타6조분별위우미경적각조변상,기중3조위소치결구,령외3조위U형탄황,경면유3조U형탄황지탱.이용유한원연건대미경빈솔향응화잠태향응특성진행료방진,결과표명해진빈솔고체7 kHz,잠태향응시간소우0.000 3 s.이용표면규공예가공출료양편,병용백광간섭의대기정태위이특성진행료측시,재50 V직류전압하미경위이량위0.7 μm.유결과가지해미경가소제정전흡합효응.고해미경불부가용우대반사광진행광정화상위적조제,야가용우자괄응광학계통중파전기변적교정.
A micromirror actuated by electrostatic repulsive force was presented to eliminate the pull-in effect which may result in a short circuit of a conventional electrostatic attractive microelectromechanical system (MEMS) micromirror. The design is based on the principle that an asymmetric electric field can generate a repulsive force. The micromirror consists of seven pairs of electrodes. The largest pair consists of a hexagon micromirror and the bottom hexagon electrode right below it. The other six pairs are located on each side of the micromirror, three of them are comb fingers and the other three are U-shaped springs which are also used to support the micromirror. The resonant frequency and transient response time simulated by finite element analysis (FEA) are 7 kHz and 0.000 3 s, respectively. The prototype was fabricated by a surface micromachining process and successfully tested using a white light interferometer, and the displacement is 0.7 μm at 50 V. Results show that the microerror can eliminate the electrostatic pull-in effect. Furthermore, it can not only be used to modulate the optical length and the phase of the reflected beam, but also be used to correct wavefront aberrations in an adaptive optics system.