中国有色金属学报
中國有色金屬學報
중국유색금속학보
THE CHINESE JOURNAL OF NONFERROUS METALS
2010年
1期
17-23
,共7页
覃银江%潘清林%何运斌%李文斌%刘晓艳%范曦
覃銀江%潘清林%何運斌%李文斌%劉曉豔%範晞
담은강%반청림%하운빈%리문빈%류효염%범희
ZK60镁合金%人工神经网络%流变应力%热压缩变形
ZK60鎂閤金%人工神經網絡%流變應力%熱壓縮變形
ZK60미합금%인공신경망락%류변응력%열압축변형
ZK60 magnesium alloy%artificial neural network%flow stress%hot compression deformation
在变形温度为200~400 ℃、应变速率为0.001~1 s~(-1)条件下,对ZK60镁合金进行热压缩实验,建立一个单隐层前馈误差反向传播人工神经网络模型,研究该镁合金的流变行为.模型的输入参数分别为变形温度、应变速率和应变,输出为流变应力,中间隐含层包含23个神经元,并采用Levenberg-Marquardt算法对此网络模型进行训练.结果表明:ZK60镁合金的流变应力随变形温度升高和应变速率降低而减小;其高温压缩流变应力曲线可描述为加工硬化、过渡、软化和稳态流变4个阶段,但在较高温度和较低应变速率时,过渡阶段不很明显;所建神经网络模型可以很好地描述ZK60镁合金的流变应力,其预测值与实验值吻合很好;利用该模型预测的变形温度和应变速率对流变应力的影响结果与一般热加工理论所得结果一致.
在變形溫度為200~400 ℃、應變速率為0.001~1 s~(-1)條件下,對ZK60鎂閤金進行熱壓縮實驗,建立一箇單隱層前饋誤差反嚮傳播人工神經網絡模型,研究該鎂閤金的流變行為.模型的輸入參數分彆為變形溫度、應變速率和應變,輸齣為流變應力,中間隱含層包含23箇神經元,併採用Levenberg-Marquardt算法對此網絡模型進行訓練.結果錶明:ZK60鎂閤金的流變應力隨變形溫度升高和應變速率降低而減小;其高溫壓縮流變應力麯線可描述為加工硬化、過渡、軟化和穩態流變4箇階段,但在較高溫度和較低應變速率時,過渡階段不很明顯;所建神經網絡模型可以很好地描述ZK60鎂閤金的流變應力,其預測值與實驗值吻閤很好;利用該模型預測的變形溫度和應變速率對流變應力的影響結果與一般熱加工理論所得結果一緻.
재변형온도위200~400 ℃、응변속솔위0.001~1 s~(-1)조건하,대ZK60미합금진행열압축실험,건립일개단은층전궤오차반향전파인공신경망락모형,연구해미합금적류변행위.모형적수입삼수분별위변형온도、응변속솔화응변,수출위류변응력,중간은함층포함23개신경원,병채용Levenberg-Marquardt산법대차망락모형진행훈련.결과표명:ZK60미합금적류변응력수변형온도승고화응변속솔강저이감소;기고온압축류변응력곡선가묘술위가공경화、과도、연화화은태류변4개계단,단재교고온도화교저응변속솔시,과도계단불흔명현;소건신경망락모형가이흔호지묘술ZK60미합금적류변응력,기예측치여실험치문합흔호;이용해모형예측적변형온도화응변속솔대류변응력적영향결과여일반열가공이론소득결과일치.
Compression tests for ZK60 magnesium alloy were carried out in the temperature range of 200-400 ℃ and strain rate range of 0.001-1 s~(-1). A feed-forward back-propagation artificial neural network with single hidden layer was established to investigate the flow behavior of this magnesium alloy. The input parameters of the model were temperature, strain rate and strain while flow stress was the output. A network contains 23 neurons in the hidden layer, and Levenberg-Marquardt training algorithm was employed. The results show that the flow stress of the ZK60 magnesium alloy decreases with increasing deformation temperature and decreasing strain rate. The flow stress curves obtained from the experiments are composed of four different stages, such as work hardening stage, transition stage, softening stage and steady stage. While for the relatively high temperature and low strain rate, the transition stage is not very obvious. The proposed model can describe the flow behavior of the ZK60 magnesium alloy precisely, the predicted results agree with the experimental values. The predicted results of the effect of deformation temperature and strain rate on the flow behavior of the ZK60 alloy are consistent with what is expected from he fundamental theory of hot compression deformation.