无机化学学报
無機化學學報
무궤화학학보
JOURNAL OF INORGANIC CHEMISTRY
2009年
2期
321-329
,共9页
热稳定性%碳"纳米试管"%反尖晶石结构%氧扩散%临界温度
熱穩定性%碳"納米試管"%反尖晶石結構%氧擴散%臨界溫度
열은정성%탄"납미시관"%반첨정석결구%양확산%림계온도
thermal stability%carbon "test tube"%inverse spinel structure%oxygen diffusion%the critical temperature
研究了纳米铁填充的碳纳米管基复合纤维在空气中的热氧化性能.结果表明:一般在室温即被氧化的铁(Fe)纳米粒子在170℃仍然具有良好的稳定性.这一方面是由于碳纳米管的保护作用所致.另一方面碳纳米管末端的Fe纳米粒子在室温下即迅速被氧化成反尖晶石型Fe3O4/γ-Fe2O3,170℃以下能有效阻止氧分子向碳纳米管内扩散.因此.170℃可以被看作氧分子扩散进人碳纳米管腔的极限温度.在170℃以下时,氧分子无法渗透Fe3O4/γ-Fe2O3晶格在管腔中形成氧分子.当温度高于170℃时,氧分子渗透发生,管腔内的Fe纳米粒子由靠近管末端位置到内部逐渐被氧化.由于相对良好的热氧化稳定性.Fe填充碳纳米管基复合纤维的铁磁性将可以在更高温度范围内得以保持.
研究瞭納米鐵填充的碳納米管基複閤纖維在空氣中的熱氧化性能.結果錶明:一般在室溫即被氧化的鐵(Fe)納米粒子在170℃仍然具有良好的穩定性.這一方麵是由于碳納米管的保護作用所緻.另一方麵碳納米管末耑的Fe納米粒子在室溫下即迅速被氧化成反尖晶石型Fe3O4/γ-Fe2O3,170℃以下能有效阻止氧分子嚮碳納米管內擴散.因此.170℃可以被看作氧分子擴散進人碳納米管腔的極限溫度.在170℃以下時,氧分子無法滲透Fe3O4/γ-Fe2O3晶格在管腔中形成氧分子.噹溫度高于170℃時,氧分子滲透髮生,管腔內的Fe納米粒子由靠近管末耑位置到內部逐漸被氧化.由于相對良好的熱氧化穩定性.Fe填充碳納米管基複閤纖維的鐵磁性將可以在更高溫度範圍內得以保持.
연구료납미철전충적탄납미관기복합섬유재공기중적열양화성능.결과표명:일반재실온즉피양화적철(Fe)납미입자재170℃잉연구유량호적은정성.저일방면시유우탄납미관적보호작용소치.령일방면탄납미관말단적Fe납미입자재실온하즉신속피양화성반첨정석형Fe3O4/γ-Fe2O3,170℃이하능유효조지양분자향탄납미관내확산.인차.170℃가이피간작양분자확산진인탄납미관강적겁한온도.재170℃이하시,양분자무법삼투Fe3O4/γ-Fe2O3정격재관강중형성양분자.당온도고우170℃시,양분자삼투발생,관강내적Fe납미입자유고근관말단위치도내부축점피양화.유우상대량호적열양화은정성.Fe전충탄납미관기복합섬유적철자성장가이재경고온도범위내득이보지.
Thermal oxidation of Fe nano-particles in nanoscopic reactors of carbon nanotubes (CNTs) was investigated by treatment in air from room temperature to 800℃. It is found that encapsulated Fe nano-particles are thermally stable up to a relatively high temperature of 170℃ comparing to oxidization at room temperature of bare ones. Fe nano-particles in the tube end of CNTs is easily oxidized to form inverse spinel structure Fe3O4/γ-Fe2O3 nano-particles, serving as barriers to prevent oxygen from diffusion into the inner hollow cavity of CNTs. It is suggested that 170℃ is the critical temperature (Tc) of oxygen diffusion through the barriers. At temperatures lower than 170℃, oxygen molecules can not diffuse through the lattice of Fe3O4/γ-Fe2O3 nano-particles to form oxygen molecules in the cavity of CNTs, while at higher temperatures the penetration of oxygen occurs and Fe nano-particles from the tip to inner most in CNTs are gradually oxidized. The mechanism is different from the oxidation behavior and thermal stability of a CNT-encapsulated Fe nanowire, which is oxidized continuously once the oxidation occured by oxygen ions migrating through the lattice of iron oxides and combines with Fe atoms to complete the oxidation process.