地球物理学进展
地毬物理學進展
지구물이학진전
PROGRESS IN GEOPHYSICS
2009年
6期
2274-2279
,共6页
余先川%曹婷婷%杨春萍%陈焕东%吴淑雷
餘先川%曹婷婷%楊春萍%陳煥東%吳淑雷
여선천%조정정%양춘평%진환동%오숙뢰
稀疏成分分析%遥感影像分类%主成分分析%数据挖掘%TM
稀疏成分分析%遙感影像分類%主成分分析%數據挖掘%TM
희소성분분석%요감영상분류%주성분분석%수거알굴%TM
sparse component analysis%remote sensing image classification%principal component analysis%data mining%TM
遥感影像分类一直是遥感研究的重点,难点和热点之一.针对经典的主成分分析法在不同地物的光谱存在重叠相关时,分类效果欠佳的缺陷,提出一种基于稀疏成分分析的遥感影像分类法.该方法利用稀疏性提取源信号,不要求源成分之间互不相关.实验结果表明,与主成分分析方法相比,基于稀疏成分分析的分类结果更可靠、更准确.
遙感影像分類一直是遙感研究的重點,難點和熱點之一.針對經典的主成分分析法在不同地物的光譜存在重疊相關時,分類效果欠佳的缺陷,提齣一種基于稀疏成分分析的遙感影像分類法.該方法利用稀疏性提取源信號,不要求源成分之間互不相關.實驗結果錶明,與主成分分析方法相比,基于稀疏成分分析的分類結果更可靠、更準確.
요감영상분류일직시요감연구적중점,난점화열점지일.침대경전적주성분분석법재불동지물적광보존재중첩상관시,분류효과흠가적결함,제출일충기우희소성분분석적요감영상분류법.해방법이용희소성제취원신호,불요구원성분지간호불상관.실험결과표명,여주성분분석방법상비,기우희소성분분석적분류결과경가고、경준학.
The classification of remote sensing images is a key issue and focused Subject in remote sensing image processing.Considering that the classification result of classical principle component analysis(PCA)is not satisfying when the spectra of different ground objects are related,a new classification method based on sparse component analysis(SCA)is presented.The proposed method utilizes the sparseness characteristic to extract source signals,and does not demand the sources be independent.The experimental result shows that compared to principle component analysis,the classification result of SCA is more reliable and more accurate.