地球物理学进展
地毬物理學進展
지구물이학진전
PROGRESS IN GEOPHYSICS
2010年
1期
211-218
,共8页
李雪英%吕喜滨%张江杰%杨晓龙%陈勇
李雪英%呂喜濱%張江傑%楊曉龍%陳勇
리설영%려희빈%장강걸%양효룡%진용
时域反Q滤波%等效Q值%最优短算子%加权最小平方方法%稳定性控制
時域反Q濾波%等效Q值%最優短算子%加權最小平方方法%穩定性控製
시역반Q려파%등효Q치%최우단산자%가권최소평방방법%은정성공제
inverse Q filtering in time domain%effective quality factor%optimum short operator%weighted least squares method%stabilization controlling
本文提出了一种全新的基于等效Q值的时域反Q滤波算法,其允许等效Q值在垂向上随时间连续变化,在空间上存在弱变化;将加权最小平方方法优化设计思想引入到时域反Q补偿短算子设计当中,给出最优时域短算子设计,将大量的频率域乘法工作转化为少量的时域褶积运算;采取表驱动方案,将短算子的构建与反Q补偿运算相剥离,极大地提升了计算效率;提出了一种新的稳定性控制方法,其既保证算法具有良好的稳定性,又满足短算子设计精度的要求.数值计算表明:时域反Q滤波算法可以取得与频域算法相同的补偿效果,并保证算法具备良好的稳定性和较高的计算效率.
本文提齣瞭一種全新的基于等效Q值的時域反Q濾波算法,其允許等效Q值在垂嚮上隨時間連續變化,在空間上存在弱變化;將加權最小平方方法優化設計思想引入到時域反Q補償短算子設計噹中,給齣最優時域短算子設計,將大量的頻率域乘法工作轉化為少量的時域褶積運算;採取錶驅動方案,將短算子的構建與反Q補償運算相剝離,極大地提升瞭計算效率;提齣瞭一種新的穩定性控製方法,其既保證算法具有良好的穩定性,又滿足短算子設計精度的要求.數值計算錶明:時域反Q濾波算法可以取得與頻域算法相同的補償效果,併保證算法具備良好的穩定性和較高的計算效率.
본문제출료일충전신적기우등효Q치적시역반Q려파산법,기윤허등효Q치재수향상수시간련속변화,재공간상존재약변화;장가권최소평방방법우화설계사상인입도시역반Q보상단산자설계당중,급출최우시역단산자설계,장대량적빈솔역승법공작전화위소량적시역습적운산;채취표구동방안,장단산자적구건여반Q보상운산상박리,겁대지제승료계산효솔;제출료일충신적은정성공제방법,기기보증산법구유량호적은정성,우만족단산자설계정도적요구.수치계산표명:시역반Q려파산법가이취득여빈역산법상동적보상효과,병보증산법구비량호적은정성화교고적계산효솔.
A method of inverse Q filtering in the time domain based on the effective quality factor is presented for the first time.The effective quality factor can vary continuously along two-way traveltime and vary weakly in spatial direction.The optimum strategy of the weighted least squares method is introduced into designing inverse Q compensation short operator in time domain for calculating the optimum factors of short operator,which can translate large amount of multiplication operation in the frequency dowaininto less convolution operation in the time domain.The scheme of table-driven is adopted to split short operator construction from operation of inverse Q compensation for raising the efficiency of calculation.A new method of stabilization controlling is proposed which can ensure the stablitity of arithmetic as well as can satisfy the demand of designing precision of short operators.Numerical examples indicate that the inverse Q filtering in the time domain can achieve the same compensation result as the arithmetic in the frequency domain and ensure the stabitity and efficiency of the arithmetic.