纳米技术与精密工程
納米技術與精密工程
납미기술여정밀공정
NANOTECHNOLOGY AND PRECISION ENGINEERING
2009年
4期
361-364
,共4页
朱应利%梁军生%刘冲%马天亮%杨少华%王素力
硃應利%樑軍生%劉遲%馬天亮%楊少華%王素力
주응리%량군생%류충%마천량%양소화%왕소력
紫外同化技术%微型直接甲醇燃料电池%封装
紫外同化技術%微型直接甲醇燃料電池%封裝
자외동화기술%미형직접갑순연료전지%봉장
UV curing technique%micro direct methanol fuel cell%packaging
为了提高燃料电池的有效面积比并减少封装用时,采用紫外固化技术成功封装了微型直接甲醇燃料电池.首先基于非硅MEMS工艺制作了带有封装孔的燃料电池集流板,然后组装燃料电池并在封装孔和两集流板间缝隙中注入紫外固化胶,最后用紫外灯照射30 s完成封装.实验结果显示,电池在宣温、全被动、3 mol/L甲醇的条件下.峰值功率密度为2.1 mW/cm2.内阻为800 mΩ·cm2.这说明紫外固化封装技术对微型直接甲醇燃料电池来说是一种有效的方法,并有望应用于其他MEMS器件的封装.
為瞭提高燃料電池的有效麵積比併減少封裝用時,採用紫外固化技術成功封裝瞭微型直接甲醇燃料電池.首先基于非硅MEMS工藝製作瞭帶有封裝孔的燃料電池集流闆,然後組裝燃料電池併在封裝孔和兩集流闆間縫隙中註入紫外固化膠,最後用紫外燈照射30 s完成封裝.實驗結果顯示,電池在宣溫、全被動、3 mol/L甲醇的條件下.峰值功率密度為2.1 mW/cm2.內阻為800 mΩ·cm2.這說明紫外固化封裝技術對微型直接甲醇燃料電池來說是一種有效的方法,併有望應用于其他MEMS器件的封裝.
위료제고연료전지적유효면적비병감소봉장용시,채용자외고화기술성공봉장료미형직접갑순연료전지.수선기우비규MEMS공예제작료대유봉장공적연료전지집류판,연후조장연료전지병재봉장공화량집류판간봉극중주입자외고화효,최후용자외등조사30 s완성봉장.실험결과현시,전지재선온、전피동、3 mol/L갑순적조건하.봉치공솔밀도위2.1 mW/cm2.내조위800 mΩ·cm2.저설명자외고화봉장기술대미형직접갑순연료전지래설시일충유효적방법,병유망응용우기타MEMS기건적봉장.
In order to improve the effective area ratio and decrease packaging time, a micro direct methanol fuel cell (μ DMFC ) was packaged by ultraviolet (UV) curing technique. First, the current collectors with packaging holes were prepared based on non-silicon MEMS technology. Then the μDMFC was assembled and UV curing resin was injected into the packaging holes and the gap between the two current collectors. Finally, the assembly was exposed under UV light for30 s and the packaging was completed. Experimeuta] results show that this passive μDMFC with 3 mol/L methanol has a maximum power density of 2. 1 mW/cm2 and an internal ohmic resistance of 800 mΩ·cm2 at room temperature, which indicates that the UV curing technique is an effective method for the μDMFC packaging and may be feasible for packaging of other MEMS devices.