机械强度
機械彊度
궤계강도
JOURNAL OF MECHANICAL STRENGTH
2010年
1期
139-143
,共5页
分叉裂纹%板条%奇异积分方程%应力强度因子%位错
分扠裂紋%闆條%奇異積分方程%應力彊度因子%位錯
분차렬문%판조%기이적분방정%응력강도인자%위착
Branch crack%Strip of finite width%Singular integral equation%Stress intensity factor%Dislocation
假设沿分叉裂纹各分支和板条边界有某位错分布,利用半平面内分叉裂纹问题的复势函数,将板条分叉裂纹问题转化为半平面内的多分叉裂纹问题处理.根据板条边界和裂纹面上的应力边界条件,建立以集中位错强度和分布位错密度为未知函数的Cauchy型奇异积分方程,利用半开型积分法则将该奇异积分方程化为代数方程求解.最后,由位错密度函数得到各裂纹分支端的应力强度因子值.文中分别给出集中力和分布力作用情况下内分叉和边缘分叉裂纹的3个算例,其极限情况的计算结果与精确解是一致的.
假設沿分扠裂紋各分支和闆條邊界有某位錯分佈,利用半平麵內分扠裂紋問題的複勢函數,將闆條分扠裂紋問題轉化為半平麵內的多分扠裂紋問題處理.根據闆條邊界和裂紋麵上的應力邊界條件,建立以集中位錯彊度和分佈位錯密度為未知函數的Cauchy型奇異積分方程,利用半開型積分法則將該奇異積分方程化為代數方程求解.最後,由位錯密度函數得到各裂紋分支耑的應力彊度因子值.文中分彆給齣集中力和分佈力作用情況下內分扠和邊緣分扠裂紋的3箇算例,其極限情況的計算結果與精確解是一緻的.
가설연분차렬문각분지화판조변계유모위착분포,이용반평면내분차렬문문제적복세함수,장판조분차렬문문제전화위반평면내적다분차렬문문제처리.근거판조변계화렬문면상적응력변계조건,건립이집중위착강도화분포위착밀도위미지함수적Cauchy형기이적분방정,이용반개형적분법칙장해기이적분방정화위대수방정구해.최후,유위착밀도함수득도각렬문분지단적응력강도인자치.문중분별급출집중력화분포력작용정황하내분차화변연분차렬문적3개산례,기겁한정황적계산결과여정학해시일치적.
The branch crack problems in a finite-width strip were solved by using the complex potential of a branch crack of half-plane,in which the distributed dislocations were assumed along all the branches and one boundary of the strip. Then by matching the traction along the branches and the boundary of the strip, Cauchy singular equations were obtained, in which the point dislocation and the distributed dislocation density served as the unknown function. Finally, by using a semi-open quadrature rule, the singular integral equations were transformed to algebra equations. It can be solved easily, and the SIF(stress intensity factor) values at the crack tips were calculated by the distributed dislocation function. Some examples are calculated, which contains the inner branch cracks and the edge branch cracks under the loading conditions of concentration force or distribution force. The results of the special cases agree well with the exact results.