物理化学学报
物理化學學報
물이화학학보
ACTA PHYSICO-CHIMICA SINICA
2010年
7期
2053-2056
,共4页
壳聚糖%N-羧丙酰壳聚糖钠%复合材料%增强改性%生物材料
殼聚糖%N-羧丙酰殼聚糖鈉%複閤材料%增彊改性%生物材料
각취당%N-최병선각취당납%복합재료%증강개성%생물재료
Chitosan%N-Carboxyl propionyl chitosan sodium%Composite%Reinforcement%Biomaterial
采用原位沉析法制备N-羧丙酰壳聚糖钠增强改性的三维壳聚糖复合棒材,并用傅里叶变换红外(FTIR)光谱、X射线衍射(XRD)、热重(TG)分析、扫描电镜(SEM)以及力学性能测试等方法研究复合棒材结构与性能之间的关系.FTIR分析表明,壳聚糖分子中的氨基官能团和乙酰氨基官能团均与N-羧丙酰壳聚糖钠分子中的羧酸盐官能团发生强烈的静电相互作用.加入N-羧丙酰壳聚糖钠后:两种分子间产生强烈的静电相互作用,限制了大分子链的运动,使得大分子链趋于刚性,同时复合棒材的层状霍加结构变得更加紧密,提高了复合棒材的热稳定性与力学性能;大分子链的刚性增强,限制了分子链排入晶格,从而降低了壳聚糖的结晶度.当复合棒材中含有15%(w)的N-羧丙酰壳聚糖钠时,其弯曲强度和弯曲模量可达156.0 MPa、5.3 GPa,与纯壳聚糖棒材相比,分别提高了68.8%、29.3%.因此,N-羧丙酰壳聚糖钠可有效地增强改性三维壳聚糖棒材,该三维复合物棒材有望用作骨折内固定材料.
採用原位沉析法製備N-羧丙酰殼聚糖鈉增彊改性的三維殼聚糖複閤棒材,併用傅裏葉變換紅外(FTIR)光譜、X射線衍射(XRD)、熱重(TG)分析、掃描電鏡(SEM)以及力學性能測試等方法研究複閤棒材結構與性能之間的關繫.FTIR分析錶明,殼聚糖分子中的氨基官能糰和乙酰氨基官能糰均與N-羧丙酰殼聚糖鈉分子中的羧痠鹽官能糰髮生彊烈的靜電相互作用.加入N-羧丙酰殼聚糖鈉後:兩種分子間產生彊烈的靜電相互作用,限製瞭大分子鏈的運動,使得大分子鏈趨于剛性,同時複閤棒材的層狀霍加結構變得更加緊密,提高瞭複閤棒材的熱穩定性與力學性能;大分子鏈的剛性增彊,限製瞭分子鏈排入晶格,從而降低瞭殼聚糖的結晶度.噹複閤棒材中含有15%(w)的N-羧丙酰殼聚糖鈉時,其彎麯彊度和彎麯模量可達156.0 MPa、5.3 GPa,與純殼聚糖棒材相比,分彆提高瞭68.8%、29.3%.因此,N-羧丙酰殼聚糖鈉可有效地增彊改性三維殼聚糖棒材,該三維複閤物棒材有望用作骨摺內固定材料.
채용원위침석법제비N-최병선각취당납증강개성적삼유각취당복합봉재,병용부리협변환홍외(FTIR)광보、X사선연사(XRD)、열중(TG)분석、소묘전경(SEM)이급역학성능측시등방법연구복합봉재결구여성능지간적관계.FTIR분석표명,각취당분자중적안기관능단화을선안기관능단균여N-최병선각취당납분자중적최산염관능단발생강렬적정전상호작용.가입N-최병선각취당납후:량충분자간산생강렬적정전상호작용,한제료대분자련적운동,사득대분자련추우강성,동시복합봉재적층상곽가결구변득경가긴밀,제고료복합봉재적열은정성여역학성능;대분자련적강성증강,한제료분자련배입정격,종이강저료각취당적결정도.당복합봉재중함유15%(w)적N-최병선각취당납시,기만곡강도화만곡모량가체156.0 MPa、5.3 GPa,여순각취당봉재상비,분별제고료68.8%、29.3%.인차,N-최병선각취당납가유효지증강개성삼유각취당봉재,해삼유복합물봉재유망용작골절내고정재료.
N-carboxyl propionyl chitosan sodium (CPCS) was used to reinforce chitosan (CS) rods by an in-situ precipitation method.Fourier transform infrared (FTIR) spectroscopy,X-ray diffraction (XRD),thermogravimetric (TG)analysis,scanning electron microscopy (SEM),and mechanical test were used to study the properties of the composite rods.The FTIR spectra confirmed that the amino and acetamido groups on CS had a strong electrostatic attraction to the carboxylate groups on CPCS.The XRD patterns showed that the crystals in CS were destroyed because of the addition of CPCS.The thermal stability of the CPCS/CS composite rods was better than those of pure CS rods and pure CPCS as a strong interaction exists between CS and CPCS molecules.The layer-by-layer structure of the CPCS/CS composite rods became tighter compared with that of pure CS rods,which resulted in improved mechanical properties for the composite rods.As 15% (w) CPCS in the composite rods,the bending strength and the bending modulus were 156.0 MPa and 5.3 GPa,which increased by 68.8% and 29.3% compared with that of pure CS rods,respectively.Therefore,CPCS reinforces CS rods effectively and these composite rods with excellent mechanical properties can be used in novel biomedical devices to fix the bone fracture.