林业科学
林業科學
임업과학
SCIENTIA SILVAE SINICAE
2009年
10期
81-87
,共7页
赵峰%庞勇%李增元%张怀清%丰伟%刘清旺
趙峰%龐勇%李增元%張懷清%豐偉%劉清旺
조봉%방용%리증원%장부청%봉위%류청왕
机载激光雷达%航空数码影像%多尺度分割%树高
機載激光雷達%航空數碼影像%多呎度分割%樹高
궤재격광뢰체%항공수마영상%다척도분할%수고
LiDAR%aerial digital camera imagery%multi-scale segmentation%tree height
用激光雷达(LiDAR)数据和航空数码影像相结合进行单木水平树高反演.对研究区的LiDAR点云数据进行滤波和分类,根据地形特点、地表植被状况以及其他地类的分布,采用Tin Filter滤波算法提取地面回波点和植被回波点.用面向对象的方法对高空间分辨率(25 cm)的航空数码影像进行单株木检测.通过多尺度、树冠模式的分割创建影像对象和类层次,用最邻近距离和成员函数法进行影像对象的分类,并基于分类结果进行再分割.对分割后的树冠多边形进行边缘优化,以准确识别单株木.将植被回波点和影像分割后得到的树冠多边形进行叠加,计算多边形内的LiDAR数据最大高程差值,与实测树高进行相关分析,建立单木树高估测回归方程,平均估测精度为74.89%.
用激光雷達(LiDAR)數據和航空數碼影像相結閤進行單木水平樹高反縯.對研究區的LiDAR點雲數據進行濾波和分類,根據地形特點、地錶植被狀況以及其他地類的分佈,採用Tin Filter濾波算法提取地麵迴波點和植被迴波點.用麵嚮對象的方法對高空間分辨率(25 cm)的航空數碼影像進行單株木檢測.通過多呎度、樹冠模式的分割創建影像對象和類層次,用最鄰近距離和成員函數法進行影像對象的分類,併基于分類結果進行再分割.對分割後的樹冠多邊形進行邊緣優化,以準確識彆單株木.將植被迴波點和影像分割後得到的樹冠多邊形進行疊加,計算多邊形內的LiDAR數據最大高程差值,與實測樹高進行相關分析,建立單木樹高估測迴歸方程,平均估測精度為74.89%.
용격광뢰체(LiDAR)수거화항공수마영상상결합진행단목수평수고반연.대연구구적LiDAR점운수거진행려파화분류,근거지형특점、지표식피상황이급기타지류적분포,채용Tin Filter려파산법제취지면회파점화식피회파점.용면향대상적방법대고공간분변솔(25 cm)적항공수마영상진행단주목검측.통과다척도、수관모식적분할창건영상대상화류층차,용최린근거리화성원함수법진행영상대상적분류,병기우분류결과진행재분할.대분할후적수관다변형진행변연우화,이준학식별단주목.장식피회파점화영상분할후득도적수관다변형진행첩가,계산다변형내적LiDAR수거최대고정차치,여실측수고진행상관분석,건립단목수고고측회귀방정,평균고측정도위74.89%.
LiDAR (light detection and ranging) is an active remote sensing technique, LiDAR instruments measure the roundtrip time for a pulse of laser energy to travel between the sensor and a target, provide a distance or range from the instrument to the object. In this research individual tree height was measured by combining IiDAR and aerial digital camera imagery. According to the terrain, vegetation and other things of the surface, the IiDAR point clouds were filtered and classified. The Tin Filter algorithm was used for the extraction of ground points and vegetation points. Object-oriented methods were used to identify the single tree in digital camera imagery. Multi-scale and canopy mode were applied in the segmentation, and the nearest neighbors and member function methods were the main classification algorithm, and the edges of canopy polygons were optimized for improving the precision of single tree identification. The classified vegetation points were overlapped with the canopy polygons, and the max height in the polygon was calculated for the correlation with ground measured tree heights. The regression equation was established, and the mean evaluation precision was 74.89 % .