中国医学影像技术
中國醫學影像技術
중국의학영상기술
CHINESE JOURNAL OF MEDICAL IMAGING TECHNOLOGY
2010年
2期
361-364
,共4页
李道伟%郭文力%卢再鸣%郭启勇
李道偉%郭文力%盧再鳴%郭啟勇
리도위%곽문력%로재명%곽계용
体层摄影术,X线计算机%能量减影%体部血管
體層攝影術,X線計算機%能量減影%體部血管
체층섭영술,X선계산궤%능량감영%체부혈관
Tomography,X-ray computed%Energy subtraction%Body artery
目的 评估双源CT(DSCT)能量减影成像所需时间、图像质量及其对血管狭窄闭塞诊断的效能.方法 23例临床疑诊体部血管疾病患者接受DSCT血管造影(DE-CTA)检查,对所获数据在双能软件中进行自动去骨(ABS)去除斑块后行手动去除残余骨质(ABPS),对融合数据在常规3D软件中行自动去骨(ABR),去骨后手动去除残余骨质(ABR-M).行最大密度投影(MIP)及多平面重组(MPR)重建,比较ABR与ABS的图像残余骨情况、ABPS和ABR-M后处理操作时间及动脉血管可见度情况;并以MPR及原始图像综合诊断结果为标准,比较两种血管成像方法对血管狭窄程度≥50%节段诊断的敏感度、特异度.结果 ABR图像总体去骨效果好于ABS(P<0.05);ABPS所需后处理时间[(7.8±4.3)min]少于ABR-M所需时间[(11.4±2.5)min],差异有统计学意义(P<0.05).共325个节段用于评价血管狭窄程度,ABPS与ABR-B对狭窄程度≥50%节段的诊断敏感度、特异度分别为95.74%、96.19%和92.93%、97.87%.结论 双源CT能量减影成像去骨、去斑块后图像质量较好,对血管狭窄的诊断较为准确,后处理所耗时间少于传统3D方法.
目的 評估雙源CT(DSCT)能量減影成像所需時間、圖像質量及其對血管狹窄閉塞診斷的效能.方法 23例臨床疑診體部血管疾病患者接受DSCT血管造影(DE-CTA)檢查,對所穫數據在雙能軟件中進行自動去骨(ABS)去除斑塊後行手動去除殘餘骨質(ABPS),對融閤數據在常規3D軟件中行自動去骨(ABR),去骨後手動去除殘餘骨質(ABR-M).行最大密度投影(MIP)及多平麵重組(MPR)重建,比較ABR與ABS的圖像殘餘骨情況、ABPS和ABR-M後處理操作時間及動脈血管可見度情況;併以MPR及原始圖像綜閤診斷結果為標準,比較兩種血管成像方法對血管狹窄程度≥50%節段診斷的敏感度、特異度.結果 ABR圖像總體去骨效果好于ABS(P<0.05);ABPS所需後處理時間[(7.8±4.3)min]少于ABR-M所需時間[(11.4±2.5)min],差異有統計學意義(P<0.05).共325箇節段用于評價血管狹窄程度,ABPS與ABR-B對狹窄程度≥50%節段的診斷敏感度、特異度分彆為95.74%、96.19%和92.93%、97.87%.結論 雙源CT能量減影成像去骨、去斑塊後圖像質量較好,對血管狹窄的診斷較為準確,後處理所耗時間少于傳統3D方法.
목적 평고쌍원CT(DSCT)능량감영성상소수시간、도상질량급기대혈관협착폐새진단적효능.방법 23례림상의진체부혈관질병환자접수DSCT혈관조영(DE-CTA)검사,대소획수거재쌍능연건중진행자동거골(ABS)거제반괴후행수동거제잔여골질(ABPS),대융합수거재상규3D연건중행자동거골(ABR),거골후수동거제잔여골질(ABR-M).행최대밀도투영(MIP)급다평면중조(MPR)중건,비교ABR여ABS적도상잔여골정황、ABPS화ABR-M후처리조작시간급동맥혈관가견도정황;병이MPR급원시도상종합진단결과위표준,비교량충혈관성상방법대혈관협착정도≥50%절단진단적민감도、특이도.결과 ABR도상총체거골효과호우ABS(P<0.05);ABPS소수후처리시간[(7.8±4.3)min]소우ABR-M소수시간[(11.4±2.5)min],차이유통계학의의(P<0.05).공325개절단용우평개혈관협착정도,ABPS여ABR-B대협착정도≥50%절단적진단민감도、특이도분별위95.74%、96.19%화92.93%、97.87%.결론 쌍원CT능량감영성상거골、거반괴후도상질량교호,대혈관협착적진단교위준학,후처리소모시간소우전통3D방법.
Objective To evaluate the effect of automatic bone and plaque removal on image quality and grading of steno-occlusive lesions in patients undergoing dual energy CT angiography (DE-CTA) of body artery. Methods DE-CTA was performed in 23 patients with suspected body vascular disease. Separate datasets were calculated for each of the two tubes and used to generate automatically bone-subtracted images (ABS) as well as additional manual bone removes after plaque subtracted images (ABPS). In addition, a weighted average dataset from both dual energy acquisitions resembling routine 3D CT acquisition was used for automatic bone remove (ABR). Residual bone in the ABR dataset was removed manually (ABR-M). Operator time for bone removal was measured, while effectiveness of bone subtraction and the time needed of ABPS and ABR-M was assessed. Compared with MPR, ABR images and stenosis grading in plaque subtracted were assessed with two radiologists. Results The imaging quality of ABR was superior to that of ABS (P<0.05). The time needed of ABPS was (7.8±4.3) min, significantly lower than that of ABR-M (11.4 min±2.5 min, P<0.05). A total of 325 steno-occlusive lesions were assessed. The sensitivity, specificity of DE-CTA and traditional 3D CTA was 95.74%, 96.19% and 92.93%, 97.87%, respectively. Conclusion The imaging quality is good after automatic bone and plaque subtraction of DE-CTA. Automatic plaque subtraction for the first time provides a true CTA imaging which is easy to interpret and reduces the need for further post-processing. The diagnosis of vascular stenosis with DE-CTA is also accurate, and the time spent in post-processing is less than that of traditional 3D angiography.