中华放射肿瘤学杂志
中華放射腫瘤學雜誌
중화방사종류학잡지
CHINESE JOURNAL OF RADIATION ONCOLOGY
2010年
1期
24-27
,共4页
韩大力%于甬华%于金明%钟小军%付正%穆殿斌%张桂芳%张百江%李辉%孙翔宇
韓大力%于甬華%于金明%鐘小軍%付正%穆殿斌%張桂芳%張百江%李輝%孫翔宇
한대력%우용화%우금명%종소군%부정%목전빈%장계방%장백강%리휘%손상우
食管肿瘤/放射疗法%体层摄影术%正电子发射型%氟脱氧胸苷%大体肿瘤体积
食管腫瘤/放射療法%體層攝影術%正電子髮射型%氟脫氧胸苷%大體腫瘤體積
식관종류/방사요법%체층섭영술%정전자발사형%불탈양흉감%대체종류체적
Esophageal neoplasms/radiotherapy%Tomography,positron emission%3-deoxy-3-fluorothymidine%Gross tumor volumes
目的 应用术后病理作为对照判断氟脱氧胸苷(FLT)PET-CT检测食管癌大体肿瘤生物靶区长度的最佳方法 和最佳界值,并与FDG PET-CT、CT、食管钡餐和食管镜进行直接对照研究.方法 24例患者行FLT PET-CT检查,其中22例行FDG PET-CT检查对照,全部患者均常规行食管钡餐、食管镜检查并均接受食管癌根治切除术.FLT PET-CT长度采用肉眼法,记为L_(FLTvisual),和采用SUV 1.3、1.4、1.5以及SUV_(max)的20%、25%和30%分别记为L_(FLT1.3)、L_(FLT1.4)、L_(FLT1.5)、L_(FLT20%)、L_(FLT25%)、L_(FLT30%);FDG PET-CT长度采用肉眼法、SUV 2.5和SUV_(max)的40%分别记为L_(FDGviaual)、L_(FDG2.5)、L_(FDG40%).CT、食管钡餐和食管镜所测得病变长度分别记为L_(CT)、L_(Scopy)和L_(X-ray)分别与术后病理长度L_(Path)进行比较.结果 L_(Path)值为(4.90±2.14)cm,各检测方法 所得病变长度由小到大依次为L_(FDG40%)、L_(Scopy)、L_(X-ray)、L_(FLT1.5)、L_(CT)、L_(FLT30%)、L_(FLTvis)、L_(FLT1.4)、L_(FLT25%)、L_(FDG2.5)、L_(FDGvis)、L_(FLT1.3)、L_(FLT20%),均数分别为(3.85±1.52)、(4.46±2.23)、(4.63±2.37)、(4.64±2.38)、(4.69±1.85)、(4.75±2.19)、(4.85±2.33)、(4.87±2.35)、(5.05±2.20)、(5.08±2.19)、(5.10 ±2.22)、(5.21 ±2.40)、(5.53±2.17)cm,与L_(Path)的相关系数分别为0.91、0.93、0.88、0.95、0.90、0.81、0.96、0.96、0.80、0.99、0.99、0.95、0.79,P值均为0.000.L_(FLT1.4)和L_(FDG2.5)分别为最佳FLT PET-CT和FDG PET-CT长度,且L_(FDG2.5)与L_(FLT1.4)相似(t=1.23,P=0.232).结论 最接近食管癌病理长度的FLT PET-CT界值为SUV 1.4,而FDG PET-CT的为SUV 2.5,可作为客观和简便易行的半定量分析指标.
目的 應用術後病理作為對照判斷氟脫氧胸苷(FLT)PET-CT檢測食管癌大體腫瘤生物靶區長度的最佳方法 和最佳界值,併與FDG PET-CT、CT、食管鋇餐和食管鏡進行直接對照研究.方法 24例患者行FLT PET-CT檢查,其中22例行FDG PET-CT檢查對照,全部患者均常規行食管鋇餐、食管鏡檢查併均接受食管癌根治切除術.FLT PET-CT長度採用肉眼法,記為L_(FLTvisual),和採用SUV 1.3、1.4、1.5以及SUV_(max)的20%、25%和30%分彆記為L_(FLT1.3)、L_(FLT1.4)、L_(FLT1.5)、L_(FLT20%)、L_(FLT25%)、L_(FLT30%);FDG PET-CT長度採用肉眼法、SUV 2.5和SUV_(max)的40%分彆記為L_(FDGviaual)、L_(FDG2.5)、L_(FDG40%).CT、食管鋇餐和食管鏡所測得病變長度分彆記為L_(CT)、L_(Scopy)和L_(X-ray)分彆與術後病理長度L_(Path)進行比較.結果 L_(Path)值為(4.90±2.14)cm,各檢測方法 所得病變長度由小到大依次為L_(FDG40%)、L_(Scopy)、L_(X-ray)、L_(FLT1.5)、L_(CT)、L_(FLT30%)、L_(FLTvis)、L_(FLT1.4)、L_(FLT25%)、L_(FDG2.5)、L_(FDGvis)、L_(FLT1.3)、L_(FLT20%),均數分彆為(3.85±1.52)、(4.46±2.23)、(4.63±2.37)、(4.64±2.38)、(4.69±1.85)、(4.75±2.19)、(4.85±2.33)、(4.87±2.35)、(5.05±2.20)、(5.08±2.19)、(5.10 ±2.22)、(5.21 ±2.40)、(5.53±2.17)cm,與L_(Path)的相關繫數分彆為0.91、0.93、0.88、0.95、0.90、0.81、0.96、0.96、0.80、0.99、0.99、0.95、0.79,P值均為0.000.L_(FLT1.4)和L_(FDG2.5)分彆為最佳FLT PET-CT和FDG PET-CT長度,且L_(FDG2.5)與L_(FLT1.4)相似(t=1.23,P=0.232).結論 最接近食管癌病理長度的FLT PET-CT界值為SUV 1.4,而FDG PET-CT的為SUV 2.5,可作為客觀和簡便易行的半定量分析指標.
목적 응용술후병리작위대조판단불탈양흉감(FLT)PET-CT검측식관암대체종류생물파구장도적최가방법 화최가계치,병여FDG PET-CT、CT、식관패찬화식관경진행직접대조연구.방법 24례환자행FLT PET-CT검사,기중22례행FDG PET-CT검사대조,전부환자균상규행식관패찬、식관경검사병균접수식관암근치절제술.FLT PET-CT장도채용육안법,기위L_(FLTvisual),화채용SUV 1.3、1.4、1.5이급SUV_(max)적20%、25%화30%분별기위L_(FLT1.3)、L_(FLT1.4)、L_(FLT1.5)、L_(FLT20%)、L_(FLT25%)、L_(FLT30%);FDG PET-CT장도채용육안법、SUV 2.5화SUV_(max)적40%분별기위L_(FDGviaual)、L_(FDG2.5)、L_(FDG40%).CT、식관패찬화식관경소측득병변장도분별기위L_(CT)、L_(Scopy)화L_(X-ray)분별여술후병리장도L_(Path)진행비교.결과 L_(Path)치위(4.90±2.14)cm,각검측방법 소득병변장도유소도대의차위L_(FDG40%)、L_(Scopy)、L_(X-ray)、L_(FLT1.5)、L_(CT)、L_(FLT30%)、L_(FLTvis)、L_(FLT1.4)、L_(FLT25%)、L_(FDG2.5)、L_(FDGvis)、L_(FLT1.3)、L_(FLT20%),균수분별위(3.85±1.52)、(4.46±2.23)、(4.63±2.37)、(4.64±2.38)、(4.69±1.85)、(4.75±2.19)、(4.85±2.33)、(4.87±2.35)、(5.05±2.20)、(5.08±2.19)、(5.10 ±2.22)、(5.21 ±2.40)、(5.53±2.17)cm,여L_(Path)적상관계수분별위0.91、0.93、0.88、0.95、0.90、0.81、0.96、0.96、0.80、0.99、0.99、0.95、0.79,P치균위0.000.L_(FLT1.4)화L_(FDG2.5)분별위최가FLT PET-CT화FDG PET-CT장도,차L_(FDG2.5)여L_(FLT1.4)상사(t=1.23,P=0.232).결론 최접근식관암병리장도적FLT PET-CT계치위SUV 1.4,이FDG PET-CT적위SUV 2.5,가작위객관화간편역행적반정량분석지표.
Objective To establish a optimal method and threshold of 3-deoxy-3-fluorothymidine (FLT) PET-CT in delineating the biological target length of gross tumor in esophageal carcinoma, and to compare FLT PET-CT with other imaging modalities including esophagoseopy, esophagography, CT and flu-orodeoxyglucose (FDG) PET-CT. Methods Twenty-four patients with esophageal squamous cell carcinoma treated with radical surgery were enrolled. Before surgery, all the patients underwent FLT PET-CT, esepha-goscopy and esophagography. Twenty-two patients also received FDG PET-CT scan. Gross tumor volumes (GTV) were delineated using seven different threshold of FLT PET-CT: visual interpretation, standardized uptake value (SUV) 1.3, SUV 1.4, SUV 1.5, 20% of maximum standard uptake value (SUV_(max)), 25% SUV_(max), and 30% SUV_(max). Three different thresholds of FDG PET-CT were used, including visual interpre-tation, SUV 2.5, and 40% SUV_(max). The length of tumors on FLT PET-CT scan were measured and recorded as L_(FLTvis), L_(FLT1.3), L_(FLT1.4), L_(FLT1.5), L_(FLT20%), L_(FLT25%), and L_(FLT30%), respectively. The length of tumors on FDG PET-CT scan were recorded as L_(FDGvis), L_(FDG2.5), and L_(FDG40%), respectively. The length of tumors on CT, esophagography and esophagoscopy were recorded as L_(CT), L_(X-ray) and L_(Scopy). All of these results were com-pared with the length of gross tumor in the reseeted specimen measured by pathological examination (L_(Path)), Results The L_(Path) was (4.90±2.14) cm. The Length of tumors delineated by different methods, being from short to long, were L_(FDG40%), L_(Scopy), L_(X-ray),L_(FLT1.5),L_(CT),L_(FLT30%),L_(FLTvis),L_(FLT1.4),L_(FLT25%), L_(FDG2.5),L_(FDGvis),L_(FLT1.3),L_(FLT20%). The mean values were (3.85±1.52), (4.46±2.23), (4.63± 2.37), (4.64±2.38),(4.69± 1.85),(4.75±2.19) ,(4.85±2.33),(4.87±2.35),(5.05±2.20), (5.08± 2.19) ,(5.10±2.22), (5.21±2.40) and (5.53±2.17) cm,respectively. The correlation coefficients were 0.91,0.93,0.88, 0.95, 0.90, 0.81,0.96, 0.96, 0.80, 0.99, 0.99, 0.95 and 0. 79 , respective-ly. All the P values were 0. 000. L_(FLT1.4) of FLT PET-CT and L_(FDG2.5) of FDG PET-CT were found more ap-proximate to L_(Path). There was no significant difference between L_(FLT1.4) and L_(FDG2.5) (1= 1.23, P = 0.232), and the correlation coefficient was 0.96 (P = 0. 000). Conclusions Thresholds of SUV 1.4 on FLT PET-CT and SUV 2.5 on FDG PET-CT could optimally estimate the tumor length measured by pathological examina-tion, and could be objective and simple methods for semiquantitative analysis.