山西大学学报(自然科学版)
山西大學學報(自然科學版)
산서대학학보(자연과학판)
JOURNAL OF SHANXI UNIVERSITY
2010年
1期
55-61
,共7页
中立系统%稳定性%时变时滞%非线性%线性矩阵不等式(LMI)
中立繫統%穩定性%時變時滯%非線性%線性矩陣不等式(LMI)
중립계통%은정성%시변시체%비선성%선성구진불등식(LMI)
neutral system%stability%time-varying delay%nonlinearity%linear matrix inequality(LMI)
通过选择适当的Lyapunov函数,使用牛顿莱布尼茨公式,结合自由权矩阵思想,并利用线性矩阵不等式(LMI)方法,获得了时滞依赖和时滞导数依赖稳定性条件比现存的一些文献保守性小些.最后,通过数值算例来验证此方法的可行性.
通過選擇適噹的Lyapunov函數,使用牛頓萊佈尼茨公式,結閤自由權矩陣思想,併利用線性矩陣不等式(LMI)方法,穫得瞭時滯依賴和時滯導數依賴穩定性條件比現存的一些文獻保守性小些.最後,通過數值算例來驗證此方法的可行性.
통과선택괄당적Lyapunov함수,사용우돈래포니자공식,결합자유권구진사상,병이용선성구진불등식(LMI)방법,획득료시체의뢰화시체도수의뢰은정성조건비현존적일사문헌보수성소사.최후,통과수치산례래험증차방법적가행성.
By choosing the appropiate Lyapunov function and using the transform of Leibnitz-Newton formula as well as the free-weighting matrics and based on linear matrix inequality(LMI), the novel strategy is proposed, It is less conservative than previous ones for solving the problem both delay-dependent and delayderivative-dependent stability criteria. Finally numerical examples showed the effectiveness of our results.