山东科学
山東科學
산동과학
SHANDONG SCIENCE
2007年
2期
1-6,9
,共7页
李福乐%王述香%张洪谦%孙丹娜%赵静
李福樂%王述香%張洪謙%孫丹娜%趙靜
리복악%왕술향%장홍겸%손단나%조정
Timoshenko梁%有限差分%可解性%收敛性%稳定性
Timoshenko樑%有限差分%可解性%收斂性%穩定性
Timoshenko량%유한차분%가해성%수렴성%은정성
Timoshenko beam%finite difference%solvability%convergence%stability
本文用降阶法技巧对一类振动Timoshenko梁方程组构造了一个三层线性差分格式,用能量分析方法证明了格式的唯一可解性,无条件稳定性和在L∞范数下的二阶收敛性.最后给出了数值例子验证了理论结果.
本文用降階法技巧對一類振動Timoshenko樑方程組構造瞭一箇三層線性差分格式,用能量分析方法證明瞭格式的唯一可解性,無條件穩定性和在L∞範數下的二階收斂性.最後給齣瞭數值例子驗證瞭理論結果.
본문용강계법기교대일류진동Timoshenko량방정조구조료일개삼층선성차분격식,용능량분석방법증명료격식적유일가해성,무조건은정성화재L∞범수하적이계수렴성.최후급출료수치례자험증료이론결과.
In this paper, we derive a linear three-level difference scheme for a vibrating Timoshenko beam equations by the method of reduction of order on uniform meshes and have proved that the scheme is uniquely solvable, unconditionally stable and second order convergent in L∞ norm with the discrete energy method. The result of the theoretical analysis is verified experimentally.