应用数学
應用數學
응용수학
MATHEMATICA APPLICATA
2009年
3期
676-682
,共7页
垂直传染%脉冲免疫接种%周期解%全局渐近稳定性%持久性
垂直傳染%脈遲免疫接種%週期解%全跼漸近穩定性%持久性
수직전염%맥충면역접충%주기해%전국점근은정성%지구성
Vertical transmission%Pulse vaccination%Periodic solution%Global asymptotic stability%Permanence
研究了一类具有垂直传染的脉冲免疫接种SIR模型,采用传染率βI(1+vI)S,得到了无病周期解,给出了此周期解的全局稳定性分析.并获得了系统一致持续生存的条件.
研究瞭一類具有垂直傳染的脈遲免疫接種SIR模型,採用傳染率βI(1+vI)S,得到瞭無病週期解,給齣瞭此週期解的全跼穩定性分析.併穫得瞭繫統一緻持續生存的條件.
연구료일류구유수직전염적맥충면역접충SIR모형,채용전염솔βI(1+vI)S,득도료무병주기해,급출료차주기해적전국은정성분석.병획득료계통일치지속생존적조건.
In this paper, an SIR epidemic disease model with vertical transmission and pulse vaccination is investigated. Used an incidence rate of the form βI(l + vI)S, an 'infection-free' periodic solution is obtained, and the analysis of global stability of the 'infection-free' periodic solution is given. Furthermore, the sufficient condition for permanence of the system is obtained.