四川大学学报(自然科学版)
四川大學學報(自然科學版)
사천대학학보(자연과학판)
JOURNAL OF SICHUAN UNIVERSITY(NATURAL SCIENCE EDITION)
2010年
1期
7-12
,共6页
Bernstein性质%凸超曲面%相对度量
Bernstein性質%凸超麯麵%相對度量
Bernstein성질%철초곡면%상대도량
Bernstein property%convex hypersurface%relative metric
设x:M→A~(n+1)是一个局部严格凸的超曲面,由Ω(<)A~n上的凸函数x_(n+1)=f(x_1,…,x_n)定义.考虑M上的相对度量G~α=p~(α+1)∑δ~2f/x_ix_jdx_idx_j,其中P=(det(δ~2f/δx_iδx_j))-1/n+2,α为常数.作者对由一个四阶偏微分方程的凸解所给出的局部严格凸超曲面进行了研究,给出了这个非线性偏微分方程凸解的Bernstein性质的证明.
設x:M→A~(n+1)是一箇跼部嚴格凸的超麯麵,由Ω(<)A~n上的凸函數x_(n+1)=f(x_1,…,x_n)定義.攷慮M上的相對度量G~α=p~(α+1)∑δ~2f/x_ix_jdx_idx_j,其中P=(det(δ~2f/δx_iδx_j))-1/n+2,α為常數.作者對由一箇四階偏微分方程的凸解所給齣的跼部嚴格凸超麯麵進行瞭研究,給齣瞭這箇非線性偏微分方程凸解的Bernstein性質的證明.
설x:M→A~(n+1)시일개국부엄격철적초곡면,유Ω(<)A~n상적철함수x_(n+1)=f(x_1,…,x_n)정의.고필M상적상대도량G~α=p~(α+1)∑δ~2f/x_ix_jdx_idx_j,기중P=(det(δ~2f/δx_iδx_j))-1/n+2,α위상수.작자대유일개사계편미분방정적철해소급출적국부엄격철초곡면진행료연구,급출료저개비선성편미분방정철해적Bernstein성질적증명.
Let x:M→A~(n+1) be a locally strongly convex hypersurface, given by a convex→function x_(n+1)=f(x_1 ,…,x_n) defined in a domain Ω(<)A~n.Consider the relative metric G~α on M, defined by G~α=p~(α+1)∑δ~2f/δx_iδx_jdx_idx_j, where p = (det(δ2~f/δx_iδx_j))-1/(n+2) and a is a constant. In this paper the authors investigate locally strongly convex hypersurface, given by a convex solution of the forth order PDE and prove a Bernstein property of the convex solutions of this nonlinear partial differential equation.