深圳大学学报(理工版)
深圳大學學報(理工版)
심수대학학보(리공판)
JOURNAL OF SHENZHEN UNIVERSITY (SCIENCE & ENGINEERING)
2010年
1期
60-64
,共5页
高分子物理与化学%传染性非典型肺炎冠状病毒%生物膜模型%膜蛋白%蛋白质折叠%格子链
高分子物理與化學%傳染性非典型肺炎冠狀病毒%生物膜模型%膜蛋白%蛋白質摺疊%格子鏈
고분자물리여화학%전염성비전형폐염관상병독%생물막모형%막단백%단백질절첩%격자련
polymer chemistry and physics%severe acute respiratory syndromes(SARS) coronavirus%biological membrane model%membrane protein%protein folding%lattice chain
受计算速度所限,现有生物膜模拟多集中于膜内多肽链片断,对膜两侧的多肽链片断关注较少.通过构建隐式生物膜模型,在格子空间中针对传染性非典型肺炎冠状病毒E蛋白的全序列进行模拟研究.结果表明,E蛋白在折叠过程中存在两个明显的热力学转变:从无规线团开始,生物膜内较强的氢键相互作用促使螺旋形成,导致coil-helix转变;在疏水相互作用下,膜两侧水溶液中的多肽链片断发生坍塌,导致coil-globule转变;最后形成稳定的跨膜构象,且跨膜序列与已有的预测结果基本符合.相关模拟手段体现了很高的计算效率,为后续的膜蛋白聚集体模拟研究提供了可行方法.
受計算速度所限,現有生物膜模擬多集中于膜內多肽鏈片斷,對膜兩側的多肽鏈片斷關註較少.通過構建隱式生物膜模型,在格子空間中針對傳染性非典型肺炎冠狀病毒E蛋白的全序列進行模擬研究.結果錶明,E蛋白在摺疊過程中存在兩箇明顯的熱力學轉變:從無規線糰開始,生物膜內較彊的氫鍵相互作用促使螺鏇形成,導緻coil-helix轉變;在疏水相互作用下,膜兩側水溶液中的多肽鏈片斷髮生坍塌,導緻coil-globule轉變;最後形成穩定的跨膜構象,且跨膜序列與已有的預測結果基本符閤.相關模擬手段體現瞭很高的計算效率,為後續的膜蛋白聚集體模擬研究提供瞭可行方法.
수계산속도소한,현유생물막모의다집중우막내다태련편단,대막량측적다태련편단관주교소.통과구건은식생물막모형,재격자공간중침대전염성비전형폐염관상병독E단백적전서렬진행모의연구.결과표명,E단백재절첩과정중존재량개명현적열역학전변:종무규선단개시,생물막내교강적경건상호작용촉사라선형성,도치coil-helix전변;재소수상호작용하,막량측수용액중적다태련편단발생담탑,도치coil-globule전변;최후형성은정적과막구상,차과막서렬여이유적예측결과기본부합.상관모의수단체현료흔고적계산효솔,위후속적막단백취집체모의연구제공료가행방법.
With the limitation of computing speed,most of simulation researches focus on the polypeptide segment inside membrane,losing sight of the parts outside membrane.Via the construction of implicit biological membrane,a computer simulation of severe acute respiratory syndromes coronavirus associated E protein in its complete length was performed in lattice space.The research results revealed two distinct thermodynamic transitions in the E protein's folding process.During the first transition,the initial random coil became α-helix and the coil-helix transition occurred due to the strong hydrogen bonding interaction in biological membrane.In the second transition,the polypeptide segment outside of the membrane collapsed,and the coil-globule transition took place because of the residue's hydrophobic interaction in solution.Finally,a stable transmembrane conformation was shaped and the sequence partition was in accordance with other prediction for E protein.In addition,our simulation method exhibited high computational efficiency,thus providing feasibility for the simulation of homo-oligomeric bundles of transmembrane protein.