上海应用技术学院学报:自然科学版
上海應用技術學院學報:自然科學版
상해응용기술학원학보:자연과학판
Journal of Shanghai Institute of Technology: Natural Science
2011年
3期
179-182
,共4页
Cosserat弹性细杆%动能定理%动量定理%动量矩定理%弧坐标
Cosserat彈性細桿%動能定理%動量定理%動量矩定理%弧坐標
Cosserat탄성세간%동능정리%동량정리%동량구정리%호좌표
Cosserat elastic rod%theorem of momentum%theorem of movement of momentum%theorem of kinetic energy%arc coordinate
讨论动力学普遍定理对弹性细杆的表现形式。基于平面截面假定,以微段杆为对象,导出动量定理、动量矩定理和动能定理对弹性细杆的表达式;为明确三者的相互关系,分别从弹性细杆动量方程和动量矩方程以及离散系统的动能定理导出弹性细杆能量方程。因存在时间和弧坐标两个自变量,除关于时间的能量定理外,还存在关于弧坐标的能量定理,显示了弹性杆的特殊性。研究结果表明,对于不受分布力和约束的情形,三者具有相同的数学形式,即等式一边为对弧坐标的全偏导数,另一边是对时间的全偏导数。为进一步研究弹性细杆的守恒运动及其守恒量奠定了基础。
討論動力學普遍定理對彈性細桿的錶現形式。基于平麵截麵假定,以微段桿為對象,導齣動量定理、動量矩定理和動能定理對彈性細桿的錶達式;為明確三者的相互關繫,分彆從彈性細桿動量方程和動量矩方程以及離散繫統的動能定理導齣彈性細桿能量方程。因存在時間和弧坐標兩箇自變量,除關于時間的能量定理外,還存在關于弧坐標的能量定理,顯示瞭彈性桿的特殊性。研究結果錶明,對于不受分佈力和約束的情形,三者具有相同的數學形式,即等式一邊為對弧坐標的全偏導數,另一邊是對時間的全偏導數。為進一步研究彈性細桿的守恆運動及其守恆量奠定瞭基礎。
토론동역학보편정리대탄성세간적표현형식。기우평면절면가정,이미단간위대상,도출동량정리、동량구정리화동능정리대탄성세간적표체식;위명학삼자적상호관계,분별종탄성세간동량방정화동량구방정이급리산계통적동능정리도출탄성세간능량방정。인존재시간화호좌표량개자변량,제관우시간적능량정리외,환존재관우호좌표적능량정리,현시료탄성간적특수성。연구결과표명,대우불수분포력화약속적정형,삼자구유상동적수학형식,즉등식일변위대호좌표적전편도수,령일변시대시간적전편도수。위진일보연구탄성세간적수항운동급기수항량전정료기출。
General theorems of dynamics for the thin elastic rod are discussed. Taking a rod with different length as an object and based on Plane Section Assumption, mathematical formulas of theorem of momentum, theorem of movement of momentum and theorem of kinetic energy for the thin elastic rod are derived from those discrete mechanical systems. The theorems of kinetic energy of the rod are also obtained from the theorem of momentum and Theorem of movement of momentum of the rod. In addition to the existing theorems of kinetic energy of the rod about the time, there exists one about arc coordi- nate of the rod, which explains the particularity of the elastic rod dynamics. The results show that they have the same mathematical form and one side of the equation is a total patial derivative of a quantity with respect to the time and the other is a total patial derivative of another quantity with respect to the arc coordinate, when there are no distributing forces acting on the rod. The paper will provide basis of studying conservative motion and conservative quantity of the rod for next step.