爆炸与冲击
爆炸與遲擊
폭작여충격
EXPLOSION AND SHOCK WAVES
2009年
4期
361-366
,共6页
固体力学%动态性能%霍普金森压杆%超高性能水泥基复合材料%粗集料%应变率
固體力學%動態性能%霍普金森壓桿%超高性能水泥基複閤材料%粗集料%應變率
고체역학%동태성능%곽보금삼압간%초고성능수니기복합재료%조집료%응변솔
solid mechanics%dynamic performance%split Hopkinson pressure bar%ultra-high performance cementitious composites%coarse aggregates%strain rate
采用大掺量超细工业废渣取代水泥、最大粒径为2.5 mm的天然砂取代粒径为600μm的磨细石英砂,并掺加了最大粒径为10 mm的高弹高强粗集料,制备出抗压强度达200 MPa的超高性能水泥基复合材料.并采用分离式霍普金森压杆装置对不同纤维掺量的钢纤维增强超高性能水泥基复合材料(ultra-high performance steel fiber reinforced cementitious composites,UHPSFRCC)试件进行了高速冲击压缩实验,研究了应变率和纤维掺量对该材料抗冲击性能的影响规律及粗集料发挥的作用.结果表明,UHPSFRCC的抗冲击能力随纤维掺量的增加而增强;动态强度随应变率的提高相应地增大;动态性能因掺入用作粗集料的玄武岩碎石而得到了相应的改善.还分析了超高性能水泥基复合材料具有高动态性能的机理.
採用大摻量超細工業廢渣取代水泥、最大粒徑為2.5 mm的天然砂取代粒徑為600μm的磨細石英砂,併摻加瞭最大粒徑為10 mm的高彈高彊粗集料,製備齣抗壓彊度達200 MPa的超高性能水泥基複閤材料.併採用分離式霍普金森壓桿裝置對不同纖維摻量的鋼纖維增彊超高性能水泥基複閤材料(ultra-high performance steel fiber reinforced cementitious composites,UHPSFRCC)試件進行瞭高速遲擊壓縮實驗,研究瞭應變率和纖維摻量對該材料抗遲擊性能的影響規律及粗集料髮揮的作用.結果錶明,UHPSFRCC的抗遲擊能力隨纖維摻量的增加而增彊;動態彊度隨應變率的提高相應地增大;動態性能因摻入用作粗集料的玄武巖碎石而得到瞭相應的改善.還分析瞭超高性能水泥基複閤材料具有高動態性能的機理.
채용대참량초세공업폐사취대수니、최대립경위2.5 mm적천연사취대립경위600μm적마세석영사,병참가료최대립경위10 mm적고탄고강조집료,제비출항압강도체200 MPa적초고성능수니기복합재료.병채용분리식곽보금삼압간장치대불동섬유참량적강섬유증강초고성능수니기복합재료(ultra-high performance steel fiber reinforced cementitious composites,UHPSFRCC)시건진행료고속충격압축실험,연구료응변솔화섬유참량대해재료항충격성능적영향규률급조집료발휘적작용.결과표명,UHPSFRCC적항충격능력수섬유참량적증가이증강;동태강도수응변솔적제고상응지증대;동태성능인참입용작조집료적현무암쇄석이득도료상응적개선.환분석료초고성능수니기복합재료구유고동태성능적궤리.
Ultrahigh-performance cementitious composites (UHPCC) with 200 MPa compressive strength were prepared by substitution of ultrafine industrial waste powder for large quantity of cement by weight and replacement of ground fine quartz sand with natural fine sand whose maximum particle diameter was 2. 5 mm. And in the prepared composites, basalt stones with high elastic modules and high strength were added, whose maximum particle diameter was 10 mm. High-speed impact compressive experiments were performed on the ultrahigh-performance steel-fiber-reinforced cementitious composites (UHPSFRCC) with different fiber volume fractions by the split Hopkinson pressure bar technique. Strain rate, fiber volume fraction and coarse aggregate can influence the impact resistance of the UHPSFRCC. The impact resistance of the UHPSFRCC is improved with the increase of fiber volume fraction and the dynamic strength of the UHPSFRCC is advanced with the increase of strain rate. The dynamic performances of the UHPSFRCC are improved with the adding of coarse aggregates of basalt stones.