航天医学与医学工程
航天醫學與醫學工程
항천의학여의학공정
SPACE MEDICINE & MEDICAL ENGINEERING
2007年
6期
391-397
,共7页
李强%杨基海%赵章琰%褚雪忠%陈香%娄智
李彊%楊基海%趙章琰%褚雪忠%陳香%婁智
리강%양기해%조장염%저설충%진향%루지
表面肌电信号%运动单位%匹配%肌疲劳%模型参数辨识
錶麵肌電信號%運動單位%匹配%肌疲勞%模型參數辨識
표면기전신호%운동단위%필배%기피로%모형삼수변식
sEMG%motor units%match%muscle fatigue%model parameters identification
目的 通过对仿真与真实表面肌电信号(sEMG)的波形匹配以及肌疲劳现象的分析,研究sEMG信号的模型参数辨识问题. 方法 在运动单位仿真的基础上,引入神经激励对运动单位的募集和发放控制特性,建立了一个较为完善的sEMG信号生理学模型.利用调整模型相关生理参数使仿真与真实sEMG信号的运动单位动作电位(MUAP)波形相匹配的方法,实现对模型参数进行估计,通过调节肌纤维传导速度(MFCV)使仿真与真实sEMG信号的平均频率(MNF)及中值频率(MDF)拟合直线趋势相似的方法,研究肌肉的疲劳现象及其机理. 结果 适当调节sEMG信号模型参数可使仿真信号波形逼近真实sEMG信号波形,各个肌纤维的MFCV在模拟恒力持续收缩过程中减小时,仿真信号的MNF和MDF拟合直线呈下降趋势. 结论 采用模型方法能够实现仿真与真实sEMG信号波形的良好匹配,并能够有效地表达肌肉的疲劳过程,可应用于肌电信号相关领域的研究.
目的 通過對倣真與真實錶麵肌電信號(sEMG)的波形匹配以及肌疲勞現象的分析,研究sEMG信號的模型參數辨識問題. 方法 在運動單位倣真的基礎上,引入神經激勵對運動單位的募集和髮放控製特性,建立瞭一箇較為完善的sEMG信號生理學模型.利用調整模型相關生理參數使倣真與真實sEMG信號的運動單位動作電位(MUAP)波形相匹配的方法,實現對模型參數進行估計,通過調節肌纖維傳導速度(MFCV)使倣真與真實sEMG信號的平均頻率(MNF)及中值頻率(MDF)擬閤直線趨勢相似的方法,研究肌肉的疲勞現象及其機理. 結果 適噹調節sEMG信號模型參數可使倣真信號波形逼近真實sEMG信號波形,各箇肌纖維的MFCV在模擬恆力持續收縮過程中減小時,倣真信號的MNF和MDF擬閤直線呈下降趨勢. 結論 採用模型方法能夠實現倣真與真實sEMG信號波形的良好匹配,併能夠有效地錶達肌肉的疲勞過程,可應用于肌電信號相關領域的研究.
목적 통과대방진여진실표면기전신호(sEMG)적파형필배이급기피로현상적분석,연구sEMG신호적모형삼수변식문제. 방법 재운동단위방진적기출상,인입신경격려대운동단위적모집화발방공제특성,건립료일개교위완선적sEMG신호생이학모형.이용조정모형상관생리삼수사방진여진실sEMG신호적운동단위동작전위(MUAP)파형상필배적방법,실현대모형삼수진행고계,통과조절기섬유전도속도(MFCV)사방진여진실sEMG신호적평균빈솔(MNF)급중치빈솔(MDF)의합직선추세상사적방법,연구기육적피로현상급기궤리. 결과 괄당조절sEMG신호모형삼수가사방진신호파형핍근진실sEMG신호파형,각개기섬유적MFCV재모의항력지속수축과정중감소시,방진신호적MNF화MDF의합직선정하강추세. 결론 채용모형방법능구실현방진여진실sEMG신호파형적량호필배,병능구유효지표체기육적피로과정,가응용우기전신호상관영역적연구.
Objective To identify the model parameters of surface Electromyography (sEMG) by comparison between simulated and recorded signals. Methods A physiological model of sEMG signal was established basing on several logical hypothetical conditions, such as motor unit action potentials (MUAP), motor unit recruitment and firing behavior caused by excitation, architecture of volume conductor and other simulated factors. According to the matched shapes between the simulated and recorded sEMG signals, a group of model parameters was obtained; according to the similar power spectrum variations of real sEMG signals, decreased muscle fiber conduction velocity (MFCV) was applied to simulate the sEMG signals of the fatigued muscle. Results The experimental results showed that the simulated superimposed MUAP shapes could be matched with the recorded MUAPs satisfactorily by adjusting some proper physiological parameters of the model. When the MFCV of each fiber was assumed to decrease, the mean and median frequency (MNF, MDF) of the simulated sEMG signals declined, and this phenomenon was very similar to that of the recorded sEMG signals and could be used to interpret the muscle fatigue process. Conclusion This model provides an effective approach to simulate real sEMG signals, and the simulated signals can also be used to help the analysis of recorded sEMG signals.