材料科学与工程学报
材料科學與工程學報
재료과학여공정학보
MATERIALS SCIENCE AND ENGINEERING
2006年
2期
187-191,199
,共6页
潘志娟%邱芯薇%李春萍%王建民%苗恒云
潘誌娟%邱芯薇%李春萍%王建民%苗恆雲
반지연%구심미%리춘평%왕건민%묘항운
丝素%静电纺丝%纳米纤维%直径%力学性能
絲素%靜電紡絲%納米纖維%直徑%力學性能
사소%정전방사%납미섬유%직경%역학성능
silk fibroin%electrospinning%nanofiber%diameter%mechanical property
采用静电纺丝的方法研制了再生丝素纳米纤维(ERSF)膜,纤维直径为50~1000nm.将脱胶后的桑蚕丝溶解在摩尔比为1:2:8 的60℃CaCl2/CH3CH2OH/H2O三元体系中,将该溶液冷冻干燥后溶解在98%的甲酸中得到再生丝素溶液,对其进行静电纺丝.研究了不同纺丝条件下,静电纺再生丝素纤维的直径分布.研究发现:在一定的电压和喷丝头与接收屏的距离(C-D)下,7wt%是具有良好可纺性的临界浓度.纤维的直径随着溶液浓度的增加而增大,随着C-D的增加而减小,并且在C-D较大时可以获得较均匀的纤维.电压是另一个影响纤维直径的重要因素,当电压高于某一数值时,可以纺得细而均匀的纳米级再生丝素纤维.在9wt%,12cm C-D and 15KV 的纺丝条件下,80%的纤维直径在50~150nm之间.由于所纺得的再生丝素纤维膜在水中会产生收缩,因此用甲醇和丙酮对其进行处理.力学性能是影响纤维膜实际使用的重要性能,我们测定和分析了静电纺再生丝素纤维膜处理前后的力学性能.
採用靜電紡絲的方法研製瞭再生絲素納米纖維(ERSF)膜,纖維直徑為50~1000nm.將脫膠後的桑蠶絲溶解在摩爾比為1:2:8 的60℃CaCl2/CH3CH2OH/H2O三元體繫中,將該溶液冷凍榦燥後溶解在98%的甲痠中得到再生絲素溶液,對其進行靜電紡絲.研究瞭不同紡絲條件下,靜電紡再生絲素纖維的直徑分佈.研究髮現:在一定的電壓和噴絲頭與接收屏的距離(C-D)下,7wt%是具有良好可紡性的臨界濃度.纖維的直徑隨著溶液濃度的增加而增大,隨著C-D的增加而減小,併且在C-D較大時可以穫得較均勻的纖維.電壓是另一箇影響纖維直徑的重要因素,噹電壓高于某一數值時,可以紡得細而均勻的納米級再生絲素纖維.在9wt%,12cm C-D and 15KV 的紡絲條件下,80%的纖維直徑在50~150nm之間.由于所紡得的再生絲素纖維膜在水中會產生收縮,因此用甲醇和丙酮對其進行處理.力學性能是影響纖維膜實際使用的重要性能,我們測定和分析瞭靜電紡再生絲素纖維膜處理前後的力學性能.
채용정전방사적방법연제료재생사소납미섬유(ERSF)막,섬유직경위50~1000nm.장탈효후적상잠사용해재마이비위1:2:8 적60℃CaCl2/CH3CH2OH/H2O삼원체계중,장해용액냉동간조후용해재98%적갑산중득도재생사소용액,대기진행정전방사.연구료불동방사조건하,정전방재생사소섬유적직경분포.연구발현:재일정적전압화분사두여접수병적거리(C-D)하,7wt%시구유량호가방성적림계농도.섬유적직경수착용액농도적증가이증대,수착C-D적증가이감소,병차재C-D교대시가이획득교균균적섬유.전압시령일개영향섬유직경적중요인소,당전압고우모일수치시,가이방득세이균균적납미급재생사소섬유.재9wt%,12cm C-D and 15KV 적방사조건하,80%적섬유직경재50~150nm지간.유우소방득적재생사소섬유막재수중회산생수축,인차용갑순화병동대기진행처리.역학성능시영향섬유막실제사용적중요성능,아문측정화분석료정전방재생사소섬유막처리전후적역학성능.
Electrospinning was used to fabricate regenerated silk fibroin nanofiber (ERSF) mats with fiber diameter range 50~1000nm. Degummed Bombyx mori silk was dissolved in a ternary solvent system of CaCl2/CH3CH2OH/H2O in 1∶2∶8 mole ratio at 60℃,and lyophilized SF was dissolved in 98% formic acid to obtain regenerated SF solution for electrospinning. The diameter distributions of ERSF spun at various spinning conditions were investigated. 7wt% was a critical concentration of SF solution for better spinnability at a special vol-tage and distance from the tip of capillary to the collector screen (C-SD). The fiber diameter increased with a concentration but decreased with a C-SD, and more uniform SF nanofibers were obtained at a larger C-SD. The effect of voltage on the ERSF was also investigated. When voltage was above a certain value, electrospun regenerated SF nanofibers became thin and even. 50-150nm electrospun SF accounted for about 80% at the spinning conditions of 9wt% concentration, 12cm C-D and 15KV voltage. The mat was treated by methanol or acetone to decrease its contraction in water. Mechanical properties are important for the practical use of the ERSF mats, thus we measured the stress-strain behaviors of the as-spun and chemical treated mats.