大豆科学
大豆科學
대두과학
SOYBEAN SCIENCE
2009年
4期
557-565,573
,共10页
周斌%邢邯%陈受宜%盖钧镒
週斌%邢邯%陳受宜%蓋鈞鎰
주빈%형함%진수의%개균일
大豆遗传连锁图谱%整合图谱%SSR
大豆遺傳連鎖圖譜%整閤圖譜%SSR
대두유전련쇄도보%정합도보%SSR
Soybean genetic linkage map%Integration%SSR
图谱整合是弥补单个作图群体因分子标记多态性的局限性而难以构建高密度图谱的有效方法.利用具明显农艺性状差异的大豆品种间杂交组合(科丰1号×南农1138-2、南农87-23×NG94-156、苏88-M21×新沂小黑豆和皖82-178×通山薄皮黄豆甲)所衍生的重组自交系群体分别构建了含有560,223,195,133个分子标记的遗传连锁图谱.以各图谱共有SSR标记作为锚定标记,使用JoinMap3.0进行图谱整合,得到一张包含20个连锁群,795个分子标记,总遗传距离2 772.9 cM,平均间距3.49 cM的整合图谱.各连锁群的标记个数在24~69之间,遗传距离在77.1~224.7 cM之间.与Song等的公共图谱比较,标记在连锁群上的分布和位置高度吻合,并增加了5个公共图谱上没有的SSR标记,另有6个SSR标记定位在不同的连锁群上.通过整合图谱可将关联分析所获基因/QTL定位到连锁群区间;便于不同群体定位结果间的比较;并找寻与之连锁更紧密的邻近标记.鉴于本图谱所用作图群体的亲本与国内育种常用材料的遗传来源相近,将更便于国内育种性状的QTL定位研究.
圖譜整閤是瀰補單箇作圖群體因分子標記多態性的跼限性而難以構建高密度圖譜的有效方法.利用具明顯農藝性狀差異的大豆品種間雜交組閤(科豐1號×南農1138-2、南農87-23×NG94-156、囌88-M21×新沂小黑豆和皖82-178×通山薄皮黃豆甲)所衍生的重組自交繫群體分彆構建瞭含有560,223,195,133箇分子標記的遺傳連鎖圖譜.以各圖譜共有SSR標記作為錨定標記,使用JoinMap3.0進行圖譜整閤,得到一張包含20箇連鎖群,795箇分子標記,總遺傳距離2 772.9 cM,平均間距3.49 cM的整閤圖譜.各連鎖群的標記箇數在24~69之間,遺傳距離在77.1~224.7 cM之間.與Song等的公共圖譜比較,標記在連鎖群上的分佈和位置高度吻閤,併增加瞭5箇公共圖譜上沒有的SSR標記,另有6箇SSR標記定位在不同的連鎖群上.通過整閤圖譜可將關聯分析所穫基因/QTL定位到連鎖群區間;便于不同群體定位結果間的比較;併找尋與之連鎖更緊密的鄰近標記.鑒于本圖譜所用作圖群體的親本與國內育種常用材料的遺傳來源相近,將更便于國內育種性狀的QTL定位研究.
도보정합시미보단개작도군체인분자표기다태성적국한성이난이구건고밀도도보적유효방법.이용구명현농예성상차이적대두품충간잡교조합(과봉1호×남농1138-2、남농87-23×NG94-156、소88-M21×신기소흑두화환82-178×통산박피황두갑)소연생적중조자교계군체분별구건료함유560,223,195,133개분자표기적유전련쇄도보.이각도보공유SSR표기작위묘정표기,사용JoinMap3.0진행도보정합,득도일장포함20개련쇄군,795개분자표기,총유전거리2 772.9 cM,평균간거3.49 cM적정합도보.각련쇄군적표기개수재24~69지간,유전거리재77.1~224.7 cM지간.여Song등적공공도보비교,표기재련쇄군상적분포화위치고도문합,병증가료5개공공도보상몰유적SSR표기,령유6개SSR표기정위재불동적련쇄군상.통과정합도보가장관련분석소획기인/QTL정위도련쇄군구간;편우불동군체정위결과간적비교;병조심여지련쇄경긴밀적린근표기.감우본도보소용작도군체적친본여국내육충상용재료적유전래원상근,장경편우국내육충성상적QTL정위연구.
Integration of genetic linkage maps into a joint one is an effective approach to overcome the limitation of number of markers due to the constraint of polymorphism in individual specific mapping populations. In the present study,four RIL populations, Kefeng 1 × Naraiong 1138-2,Nannong 87-23 ×NG94-156,Su 88-M21 × Xinyixiaoheidou and Wan 82-178 × Tongshanbopihuangdoujia derived from the crosses between distinct elite cultivars of Glycine max (L.) Merr. were used at first to construct individual genetic linkage maps with 560,223,195 and 133 markers, respectively, by using the software JoinMap 3.0. Then based on the common SSR markers across the four maps,the individual maps were integrated into an integrated genetic linkage map by using the same software, which containing 795 markers spanning 2 772. 9 cM of the soybean genome,distributed on 20 linkage groups with the length of linkage groups varied from 77. 1 cM to 224. 7 cM,the marker number from 24 to 69, and an average marker distance of 3. 49 cM. Among the linkage groups, C2, Cl, N and F are obviously highly enhanced. In comparison with Song et al' s integrated map, the present map shows a good coincidence with it except with six SSR markers located on different linkage groups and five new SSR markers added to the present map. The integrated map can be used in locating genes/QTLs detected in marker analysis and association mapping,in comparing mapping results from different populations, and in searching for closer markers. The present integrated map performed a reasonable result in comparison with the individual maps. Therefore, the present map is potential in QTL mapping study, especially for domestic soybean breeding purposes since the parental materials of the four RIL populations are closely related to the breeding materials in Chinese breeding programs.