中国医学影像技术
中國醫學影像技術
중국의학영상기술
CHINESE JOURNAL OF MEDICAL IMAGING TECHNOLOGY
2001年
2期
175-177
,共3页
杨秀军%凌桂明%缪竞陶%文伟%姚戈虹%陈海曦%胡远胜%徐先鸿%彭仁罗
楊秀軍%凌桂明%繆競陶%文偉%姚戈虹%陳海晞%鬍遠勝%徐先鴻%彭仁囉
양수군%릉계명%무경도%문위%요과홍%진해희%호원성%서선홍%팽인라
尿道%磁共振成像%快速破坏梯度重聚序列%尿路造影%内窥镜
尿道%磁共振成像%快速破壞梯度重聚序列%尿路造影%內窺鏡
뇨도%자공진성상%쾌속파배제도중취서렬%뇨로조영%내규경
目的 探讨磁共振仿真内窥镜尿路成像方法和技术。 方法 采用磁共振水成像(MRH)和/或磁共振静脉尿路造影(MR-IVU)作为影像源,应用导航软件对150例患者进行了磁共振仿真尿路镜观察,其中107例同时行了X线静脉尿路造影(X-IVU),33例行了输尿管镜或膀胱镜检查。 结果 单层块单激发FSE序列除外,几种MRH和MR-IVU技术,均有效地采集了全尿路影像,并获得仿真内镜图像,无任何与检查相关的并发症。 结论 磁共振仿真尿道镜的内腔和病变的内镜样显示,可由二维HT2-FSE或多薄层单激发FSE序列、和一次屏气下的二维或三维快速破坏梯度重聚(FSPGR)序列获取,是常规磁共振成像有效的补充方法。
目的 探討磁共振倣真內窺鏡尿路成像方法和技術。 方法 採用磁共振水成像(MRH)和/或磁共振靜脈尿路造影(MR-IVU)作為影像源,應用導航軟件對150例患者進行瞭磁共振倣真尿路鏡觀察,其中107例同時行瞭X線靜脈尿路造影(X-IVU),33例行瞭輸尿管鏡或膀胱鏡檢查。 結果 單層塊單激髮FSE序列除外,幾種MRH和MR-IVU技術,均有效地採集瞭全尿路影像,併穫得倣真內鏡圖像,無任何與檢查相關的併髮癥。 結論 磁共振倣真尿道鏡的內腔和病變的內鏡樣顯示,可由二維HT2-FSE或多薄層單激髮FSE序列、和一次屏氣下的二維或三維快速破壞梯度重聚(FSPGR)序列穫取,是常規磁共振成像有效的補充方法。
목적 탐토자공진방진내규경뇨로성상방법화기술。 방법 채용자공진수성상(MRH)화/혹자공진정맥뇨로조영(MR-IVU)작위영상원,응용도항연건대150례환자진행료자공진방진뇨로경관찰,기중107례동시행료X선정맥뇨로조영(X-IVU),33례행료수뇨관경혹방광경검사。 결과 단층괴단격발FSE서렬제외,궤충MRH화MR-IVU기술,균유효지채집료전뇨로영상,병획득방진내경도상,무임하여검사상관적병발증。 결론 자공진방진뇨도경적내강화병변적내경양현시,가유이유HT2-FSE혹다박층단격발FSE서렬、화일차병기하적이유혹삼유쾌속파배제도중취(FSPGR)서렬획취,시상규자공진성상유효적보충방법。
Objective To study the methods and techniques of MR virtual endoscopy of urinary tracts. Methods MR virtual endoscopy of urinary tracts was performed in 150 cases, using navigator software based on the source imaging data of MR hydrography (MRH) and/or MR intravenous urography (MR-IVU). X-ray intravenous urography (X-IVU) was performed in first 107 cases and 33 cases were underwent simultaneously ureterorenoscopy and/or cystoscopy. Results Urography was successfully obtained with various techniques of MRH and MR-IVU, and three-dimensional (3D) virtual endoluminal views in various way were successfully reformed with the source data of MR-IVU and MRH but thick single-shot fast spin-echo pulse sequence. There was no any complication after imaging examination. Conclusion MR virtual endoscopy which provides endoscope-like display of urinary tracts and lesions, is obtained with 2D heavily T2-weighted or thin single-shot fast spin-echo sequences and single-breath-hold 2D/3D fast spoiled gradient-echo refocus (FSPGR) sequences, and it's a useful supplementary method to conventional MR imaging and other post-processing techniques.