北京邮电大学学报
北京郵電大學學報
북경유전대학학보
JOURNAL OF BEIJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS
2009年
6期
88-92
,共5页
孙跃鹏%刘民%郝井华%吴澄
孫躍鵬%劉民%郝井華%吳澄
손약붕%류민%학정화%오징
支持向量机%整经轴数%特征选择%预测%调度
支持嚮量機%整經軸數%特徵選擇%預測%調度
지지향량궤%정경축수%특정선택%예측%조도
support vector machine%trim beam number%feature selection%prediction%scheduling
提出了一种基于改进支持向量机(SVM)特征选择算法及神经网络的整经轴数预测算法,该算法采用改进SVM算法选择影响整经轴数的关键特征,在此基础上利用前馈神经网络获得整经轴数的预测值. 在数值计算及实际制造企业的应用效果表明该算法有效,能满足实际棉纺生产过程整经轴数预测的需要.
提齣瞭一種基于改進支持嚮量機(SVM)特徵選擇算法及神經網絡的整經軸數預測算法,該算法採用改進SVM算法選擇影響整經軸數的關鍵特徵,在此基礎上利用前饋神經網絡穫得整經軸數的預測值. 在數值計算及實際製造企業的應用效果錶明該算法有效,能滿足實際棉紡生產過程整經軸數預測的需要.
제출료일충기우개진지지향량궤(SVM)특정선택산법급신경망락적정경축수예측산법,해산법채용개진SVM산법선택영향정경축수적관건특정,재차기출상이용전궤신경망락획득정경축수적예측치. 재수치계산급실제제조기업적응용효과표명해산법유효,능만족실제면방생산과정정경축수예측적수요.
The trim beam number is an important parameter in the scheduling model of the cotton spinning manufacturing process. Because of the complexity of the trim technique, the actual trim beam number is difficult to obtain before scheduling. A prediction algorithm using a modified support vector machine (SVM)-based feature selection method and feed forward neural network (FFNN) is presented for predicting the trim beam number. In the algorithm, the proposed feature selection method is adopted to pick up critical features that affect the trim beam number, and FFNN is adopted to predict the trim beam number based on the critical features. Numerical computational results show that the proposed algorithm is effective. The algorithm also successfully applies in the related problems in practical cotton textile manufacturing system.