广东电力
廣東電力
엄동전력
GUANGDONG ELECTRIC POWER
2001年
1期
1-4
,共4页
模糊专家系统%短期负荷预测%规则
模糊專傢繫統%短期負荷預測%規則
모호전가계통%단기부하예측%규칙
针对人工神经网络短期负荷预测方法的不足,考虑天气中的日平均气温、天气状况以及特殊事件等影响负荷变化的主要因素,利用专家经验,模仿专家处理问题的方法,设计了一个模糊专家系统,对负荷预测结果进行修正,以提高负荷预测精度。通过合理选择模糊推理规则的形式,有效地减少了规则的数目,使得人工总结专家经验并确定模糊推理规则成为可能,减少了计算量,提高了算法速度。
針對人工神經網絡短期負荷預測方法的不足,攷慮天氣中的日平均氣溫、天氣狀況以及特殊事件等影響負荷變化的主要因素,利用專傢經驗,模倣專傢處理問題的方法,設計瞭一箇模糊專傢繫統,對負荷預測結果進行脩正,以提高負荷預測精度。通過閤理選擇模糊推理規則的形式,有效地減少瞭規則的數目,使得人工總結專傢經驗併確定模糊推理規則成為可能,減少瞭計算量,提高瞭算法速度。
침대인공신경망락단기부하예측방법적불족,고필천기중적일평균기온、천기상황이급특수사건등영향부하변화적주요인소,이용전가경험,모방전가처리문제적방법,설계료일개모호전가계통,대부하예측결과진행수정,이제고부하예측정도。통과합리선택모호추리규칙적형식,유효지감소료규칙적수목,사득인공총결전가경험병학정모호추리규칙성위가능,감소료계산량,제고료산법속도。
In this paper,one fuzzy expert system is designed according tothe main reasons of daily average temperature and special events which would affect the change of the load,utilizing expert experience and imitating the method by which the experts deal with the problem,in allusion to the shortcoming of the short-term load forecasting employing artificial neural network.The load forecasting result can be updated,then the accuracy can be improved.The number of the rules is reduced via the reasonable choice of the fuzzy reasoning rules,which make it possible that the expert experience is summarized artificially to the fuzzy reasoning rules.Calculating quantity is reduced and the algorithm speed rises,too.