农业工程学报
農業工程學報
농업공정학보
2009年
12期
167-173,封2
,共8页
吴文斌%杨鹏%张莉%唐华俊%周清波%Shibasaki Ryosuke
吳文斌%楊鵬%張莉%唐華俊%週清波%Shibasaki Ryosuke
오문빈%양붕%장리%당화준%주청파%Shibasaki Ryosuke
数据系统%数据转换%图像处理%全球土地覆盖数据%中国土地利用数据(NLCD-2000)%耕地%精度评价
數據繫統%數據轉換%圖像處理%全毬土地覆蓋數據%中國土地利用數據(NLCD-2000)%耕地%精度評價
수거계통%수거전환%도상처리%전구토지복개수거%중국토지이용수거(NLCD-2000)%경지%정도평개
database systems%data transfer%image processing%global land cover datasets%national land cover dataset 2000(NLCD-2000)%cropland%accuracy assessment
该研究以中国耕地类别为研究对象,选择2000年中国土地利用数据(NLCD-2000)为参考数据,利用比较分析法,从面积数量精度和空间位置精度两方面对目前4类全球土地覆盖数据(UMD、IGBP-DISCover、MODIS和GLC2000)产品进行了精度验证,并分析研究了4类数据精度的异同性.结果表明,4类全球数据对中国耕地数量特征和空间位置特征的估测具有明显的区域差异性.MODIS数据集和GLC2000数据集对中国耕地制图的总体精度要高于UMD数据集和IGBP-DISCover数据集.4类数据制图精度高的区域主要分布在中国的农业主产区,而误差大的区域主要分布在中国山区或耕地比例低的区域.低空间分辨率的信息源、基于像元的分类方法,以及中国复杂地形特征是4类全球土地覆盖数据精度差异的主要原因.
該研究以中國耕地類彆為研究對象,選擇2000年中國土地利用數據(NLCD-2000)為參攷數據,利用比較分析法,從麵積數量精度和空間位置精度兩方麵對目前4類全毬土地覆蓋數據(UMD、IGBP-DISCover、MODIS和GLC2000)產品進行瞭精度驗證,併分析研究瞭4類數據精度的異同性.結果錶明,4類全毬數據對中國耕地數量特徵和空間位置特徵的估測具有明顯的區域差異性.MODIS數據集和GLC2000數據集對中國耕地製圖的總體精度要高于UMD數據集和IGBP-DISCover數據集.4類數據製圖精度高的區域主要分佈在中國的農業主產區,而誤差大的區域主要分佈在中國山區或耕地比例低的區域.低空間分辨率的信息源、基于像元的分類方法,以及中國複雜地形特徵是4類全毬土地覆蓋數據精度差異的主要原因.
해연구이중국경지유별위연구대상,선택2000년중국토지이용수거(NLCD-2000)위삼고수거,이용비교분석법,종면적수량정도화공간위치정도량방면대목전4류전구토지복개수거(UMD、IGBP-DISCover、MODIS화GLC2000)산품진행료정도험증,병분석연구료4류수거정도적이동성.결과표명,4류전구수거대중국경지수량특정화공간위치특정적고측구유명현적구역차이성.MODIS수거집화GLC2000수거집대중국경지제도적총체정도요고우UMD수거집화IGBP-DISCover수거집.4류수거제도정도고적구역주요분포재중국적농업주산구,이오차대적구역주요분포재중국산구혹경지비례저적구역.저공간분변솔적신식원、기우상원적분류방법,이급중국복잡지형특정시4류전구토지복개수거정도차이적주요원인.
This study aims to examine the suitability of four global land cover datasets (UMD, IGBP-DISCover, MODIS and GLC2000) for their accuracies in mapping and monitoring cropland across China. For that, four global land cover products were firstly compared with the national land cover dataset 2000 (NLCD-2000) at provincial, regional and national scales to evaluate the accuracies of estimation of aggregated cropland area in China. This was followed by a spatial comparison to assess their accuracies in estimating the spatial distribution of cropland across China. The results showed that there were varying levels of apparent discrepancies in estimating China's cropland among these four global datasets, and that both aggregated areas and spatial agreement between them varied from region to region. MODIS and GLC2000 datasets had a relatively higher accuracy in depicting China's cropland than UMD and IGBP-DISCover datasets. The coarse spatial resolution and per pixel classification approach, as well as landscape heterogeneity, are the main reasons for large discrepancies between these four global land cover datasets and NLCD-2000 dataset.