中华创伤骨科杂志
中華創傷骨科雜誌
중화창상골과잡지
CHINESE JOURNAL OF ORTHOPAEDIC TRAUMA
2009年
6期
551-554
,共4页
董青山%商洪涛%张圃%马秦%杨镟凝%毛天球
董青山%商洪濤%張圃%馬秦%楊鏇凝%毛天毬
동청산%상홍도%장포%마진%양선응%모천구
组织工程%骨%血管生成%珊瑚%动静脉短路环
組織工程%骨%血管生成%珊瑚%動靜脈短路環
조직공정%골%혈관생성%산호%동정맥단로배
Tissue engineering%Bone%Angiogenesis%Coral%Arteriovenous loop
目的 通过比较动静脉短路环(AV环)和动静脉束(AV束)植入珊瑚后诱导血管新生的程度,探讨构建带血管蒂的组织工程骨支架材料动物模犁的可行性.方法 新西兰兔36只,解剖分离出左侧股静脉和股动脉及腘动脉分支.AV环组(A组)将胭动脉和股静脉末端切断,近心端行血管端端吻合,形成动静脉短路环,环绕套入天然珊瑚块的侧槽中.AV束绀(B组)股动静脉血管束保持血流通畅,不切断,动静脉分开套人珊瑚块的两边侧槽中.植人体外加ePTFE膜包裹隔绝,固定于大腿皮下.2、4、6周行标本的墨汁灌注和血管铸型,墨汁灌注后珊瑚脱钙、HF染色、组织学观察,分析珊瑚孔隙中组织结构和血管新生情况,计数每份标小的平均血管密度,血管密度做计量统计学分析;血管铸型标本行大体解剖和腐蚀后血管分栉等观察,了解血管与珊瑚的火系,以及新生血管程度和米源.结果 珊瑚植入体内后表面和深部有大量纤维血管样组织生长.墨汁灌注显示血管广泛分布在珊瑚表层和间隙内,结构成熟,4周已贯穿珊瑚块的全层.2、4、6周血管密度逐渐加大,A组(2周276.6±4.67;4周517.20±10.66,6周707.00±11.87)较B组(2周153.60±7.16,4周269.40±6.80,6周279.20±6.53)血管生成密度更大,筹异有统计学意义(P<0.01).血管铸型显示A组血管环周边和珊瑚表层充满小血管,B组血管明显稀疏.腐蚀铸型显示A组血管环动静脉段芽生和伴行有丰富的小血管,在入口处形成网状结构,并相互吻合;B组主干动脉血管无发芽新生血管,仅有周边伴行的部分小血管长入.结论 AV环方法和AV束方法均可以促进驯瑚的血管化,前者诱导血管新生的能力更强.
目的 通過比較動靜脈短路環(AV環)和動靜脈束(AV束)植入珊瑚後誘導血管新生的程度,探討構建帶血管蒂的組織工程骨支架材料動物模犛的可行性.方法 新西蘭兔36隻,解剖分離齣左側股靜脈和股動脈及腘動脈分支.AV環組(A組)將胭動脈和股靜脈末耑切斷,近心耑行血管耑耑吻閤,形成動靜脈短路環,環繞套入天然珊瑚塊的側槽中.AV束紺(B組)股動靜脈血管束保持血流通暢,不切斷,動靜脈分開套人珊瑚塊的兩邊側槽中.植人體外加ePTFE膜包裹隔絕,固定于大腿皮下.2、4、6週行標本的墨汁灌註和血管鑄型,墨汁灌註後珊瑚脫鈣、HF染色、組織學觀察,分析珊瑚孔隙中組織結構和血管新生情況,計數每份標小的平均血管密度,血管密度做計量統計學分析;血管鑄型標本行大體解剖和腐蝕後血管分櫛等觀察,瞭解血管與珊瑚的火繫,以及新生血管程度和米源.結果 珊瑚植入體內後錶麵和深部有大量纖維血管樣組織生長.墨汁灌註顯示血管廣汎分佈在珊瑚錶層和間隙內,結構成熟,4週已貫穿珊瑚塊的全層.2、4、6週血管密度逐漸加大,A組(2週276.6±4.67;4週517.20±10.66,6週707.00±11.87)較B組(2週153.60±7.16,4週269.40±6.80,6週279.20±6.53)血管生成密度更大,籌異有統計學意義(P<0.01).血管鑄型顯示A組血管環週邊和珊瑚錶層充滿小血管,B組血管明顯稀疏.腐蝕鑄型顯示A組血管環動靜脈段芽生和伴行有豐富的小血管,在入口處形成網狀結構,併相互吻閤;B組主榦動脈血管無髮芽新生血管,僅有週邊伴行的部分小血管長入.結論 AV環方法和AV束方法均可以促進馴瑚的血管化,前者誘導血管新生的能力更彊.
목적 통과비교동정맥단로배(AV배)화동정맥속(AV속)식입산호후유도혈관신생적정도,탐토구건대혈관체적조직공정골지가재료동물모리적가행성.방법 신서란토36지,해부분리출좌측고정맥화고동맥급객동맥분지.AV배조(A조)장연동맥화고정맥말단절단,근심단행혈관단단문합,형성동정맥단로배,배요투입천연산호괴적측조중.AV속감(B조)고동정맥혈관속보지혈류통창,불절단,동정맥분개투인산호괴적량변측조중.식인체외가ePTFE막포과격절,고정우대퇴피하.2、4、6주행표본적묵즙관주화혈관주형,묵즙관주후산호탈개、HF염색、조직학관찰,분석산호공극중조직결구화혈관신생정황,계수매빈표소적평균혈관밀도,혈관밀도주계량통계학분석;혈관주형표본행대체해부화부식후혈관분즐등관찰,료해혈관여산호적화계,이급신생혈관정도화미원.결과 산호식입체내후표면화심부유대량섬유혈관양조직생장.묵즙관주현시혈관엄범분포재산호표층화간극내,결구성숙,4주이관천산호괴적전층.2、4、6주혈관밀도축점가대,A조(2주276.6±4.67;4주517.20±10.66,6주707.00±11.87)교B조(2주153.60±7.16,4주269.40±6.80,6주279.20±6.53)혈관생성밀도경대,주이유통계학의의(P<0.01).혈관주형현시A조혈관배주변화산호표층충만소혈관,B조혈관명현희소.부식주형현시A조혈관배동정맥단아생화반행유봉부적소혈관,재입구처형성망상결구,병상호문합;B조주간동맥혈관무발아신생혈관,부유주변반행적부분소혈관장입.결론 AV배방법화AV속방법균가이촉진순호적혈관화,전자유도혈관신생적능력경강.
Objective To compare the effects of 2 vascular carriers, arteriovenous loop and arteri-ovenous bundle, on inducing angiogenesis in coral scaffold of vascularized tissue-engineered bone in animal models.Methods Thirty-six adult male New Zealand rabbits were randomized into 2 even groups.In group A, an arteriovenous loop (AVL) was formed by microsurgical anastomosis at the proximal ends between the femoral poptiteal artery and vein, and placed in the circular side groove of the coral block (6 mm × 8 mm × 10 mm) .In group B, flow-through vessels bundles of both femoral artery and vein were placed in the side grooves of the coral block.All the implants in 2 groups were wrapped by a micro-porous expand-ed-polytetrafluoroethylene (ePTFE) membrane, and fixed subcutaneously by suturing.Evaluation methods included gross morphological observations, histological examinations, India ink perfusion and vascular casting after 2, 4, 6 weeks.The density of blood vessels was analyzed by the statistical software SPSS 10.0.Results All the corals were encased by newly formed fibrovascular tissues in 2 groups.Ink-stained vessels distributed the surfaces and side grooves, and invaded the interspaces of corals.The degree of vascularization increased over the course of experiment.Blood vessel density demonstrated a significant continuous increase between 2 and 6 weeks after implantation in group A.The mean value of blood vessel density in group A (2 weeks 276.60±4.67, 4 weeks 517.20±10.66, 6 weeks 707.00 ±11.87) was significantly higher than in group B (2 weeks 153.60 ±7.16, 4 weeks 269.40±6.80, 6 weeks 279.20±6.53) (P <0.01).Vascular casting showed that in group A, significant blood vessels sprouted from all areas of the loop, espe-cially at the entrance of the arteriovenous pediele where the small tubes were densely interconnected.In group B, however, no blood vessels sprouted from the arteriovenous bundles and only some small vessels grew from the entrance and exit.Conclusions A vascularized coral model can be constructed by inserting an ar-teriovenous loop or an arteriovenous bundle, useful in vascular bone tissue engineering.The former, however, have stronger abilities to induce angiogenesis than the latter.