电子显微学报
電子顯微學報
전자현미학보
JOURNAL OF CHINESE ELECTRON MICROSCOPY SOCIETY
2009年
5期
442-447
,共6页
盛仙永%米热古力·买买肉孜%董晓玲%赵蕊%朱进
盛仙永%米熱古力·買買肉孜%董曉玲%趙蕊%硃進
성선영%미열고력·매매육자%동효령%조예%주진
快速共聚焦%百合%花粉管%线粒体%分布%动态
快速共聚焦%百閤%花粉管%線粒體%分佈%動態
쾌속공취초%백합%화분관%선립체%분포%동태
real-time laser scanning confocal microscope%pollen tube%mitochondria%distribution%dynamics
线粒体是真核细胞中高度动态变化的一种细胞器.但目前有关植物细胞,尤其是花粉管中线粒体的分布及其动态变化的信息还比较少.本文应用Zeiss 5 live快速共聚焦显微镜结合线粒体荧光探针Mitotracker Green对百合花粉管中线粒体的分布及其动态变化进行了观察和测定.结果显示,正常培养的百合花粉管中线粒体呈倒喷泉式移动,即花粉管基部的线粒体移动到亚顶端后即发生回流,因此花粉管顶端锥形区域内很少观察到线粒体的存在.对单个线粒体进行跟踪分析结果表明花粉管中的线粒体分为快速运动和锚定状态两种.快速移动的线粒体在花粉管两侧质膜下及花粉管中央沿着与花粉管长轴平行的方向运动,在花粉管亚顶端则沿着一定曲线移动;锚定在细胞质中的线粒体则随着胞质环流而被动移动.低浓度的微丝骨架抑制剂Jas处理时间依赖性地引起花粉管亚顶端的线粒体逐渐前移,并最终充满整个花粉管顶端,同时花粉管中快速移动线粒体的比例逐渐减少.上述结果表明,花粉管中的线粒体主要沿着微丝骨架进行快速移动,而花粉管亚顶端精细微丝组成的领区(Collar)在花粉管线粒体的分布和动态变化中起重要作用.
線粒體是真覈細胞中高度動態變化的一種細胞器.但目前有關植物細胞,尤其是花粉管中線粒體的分佈及其動態變化的信息還比較少.本文應用Zeiss 5 live快速共聚焦顯微鏡結閤線粒體熒光探針Mitotracker Green對百閤花粉管中線粒體的分佈及其動態變化進行瞭觀察和測定.結果顯示,正常培養的百閤花粉管中線粒體呈倒噴泉式移動,即花粉管基部的線粒體移動到亞頂耑後即髮生迴流,因此花粉管頂耑錐形區域內很少觀察到線粒體的存在.對單箇線粒體進行跟蹤分析結果錶明花粉管中的線粒體分為快速運動和錨定狀態兩種.快速移動的線粒體在花粉管兩側質膜下及花粉管中央沿著與花粉管長軸平行的方嚮運動,在花粉管亞頂耑則沿著一定麯線移動;錨定在細胞質中的線粒體則隨著胞質環流而被動移動.低濃度的微絲骨架抑製劑Jas處理時間依賴性地引起花粉管亞頂耑的線粒體逐漸前移,併最終充滿整箇花粉管頂耑,同時花粉管中快速移動線粒體的比例逐漸減少.上述結果錶明,花粉管中的線粒體主要沿著微絲骨架進行快速移動,而花粉管亞頂耑精細微絲組成的領區(Collar)在花粉管線粒體的分佈和動態變化中起重要作用.
선립체시진핵세포중고도동태변화적일충세포기.단목전유관식물세포,우기시화분관중선립체적분포급기동태변화적신식환비교소.본문응용Zeiss 5 live쾌속공취초현미경결합선립체형광탐침Mitotracker Green대백합화분관중선립체적분포급기동태변화진행료관찰화측정.결과현시,정상배양적백합화분관중선립체정도분천식이동,즉화분관기부적선립체이동도아정단후즉발생회류,인차화분관정단추형구역내흔소관찰도선립체적존재.대단개선립체진행근종분석결과표명화분관중적선립체분위쾌속운동화묘정상태량충.쾌속이동적선립체재화분관량측질막하급화분관중앙연착여화분관장축평행적방향운동,재화분관아정단칙연착일정곡선이동;묘정재세포질중적선립체칙수착포질배류이피동이동.저농도적미사골가억제제Jas처리시간의뢰성지인기화분관아정단적선립체축점전이,병최종충만정개화분관정단,동시화분관중쾌속이동선립체적비례축점감소.상술결과표명,화분관중적선립체주요연착미사골가진행쾌속이동,이화분관아정단정세미사조성적령구(Collar)재화분관선립체적분포화동태변화중기중요작용.
Mitochondria are vital organelles involved in various variety of fundamental functions ranging from the biosynthesis of ATP through the programmed cell death. However, the present data are apparently insufficient to provide complete knowledge of the distribution and dynamics of mitochondria, especially in plant cell. In the present study, mitochondria in Lilium longiflorum was stained with Mitotracker Green and visualized with Zeiss 5 live real-time laser scanning confocal microscope. It was revealed that mitochondria in the control tubes streams are in a reverse fountain pattern. In detail, in Lilium longiflorum pollen tubes, mitochondria move beneath the plasma membrane toward the subapex where they turn and move away from center of the tube toward the base, mitochondria were therefore rarely observed at the apex of pollen tube. Monitoring individual mitochondria indicated that their motion can be mainly classified into two categories: some move rapidly with preferentially axial orientation both in the center and beneath the plasma membrane of pollen tube, but gradually change their direction following a semicircular track at the subapex. The others were in Brownian motion, passively change their position promoted by cytoplasmic streaming. Application of Jas, which disrupts microfilaments, resulted in the extension of mitochondria into the extreme apex in a time dependent manner. Gradually, the amount of rapid moving mitochondria reduced. All of these data enable us to conclude that rapid movement of mitochondria mainly depend on microfilaments, and the "collar", a distinct arrangement of mostly net-axially orientated AFs at the subapex, may has vital function in mitochondria distribution in pollen tubes.